xanthurenic acid
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 47)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Abbas F. Almulla ◽  
Michael Maes

Kynurenine or tryptophan catabolite (TRYCAT) pathway contributes to the pathophysiology of major depression disorder (MDD) and major depressive episodes (MDE) in bipolar disorder and suicidal behaviors. The consequences of the overactivation of this pathway large reduced tryptophan (TRP) levels in peripheral blood and the CNS and increased levels of neurotoxic TRYCATs including kynurenine (KYN), 3-hydroxy kynurenine (3HK), quinolinic acid (QA), xanthurenic acid (XA), and picolinic acid (PA). However, other TRYCATs are protective, such as kynurenic acid (KA) and anthranilic acid (AA). Inflammation and cell-mediated immune activation along with oxidative and nitrosative stress (O&NS) may stimulate the first and rate-limiting enzyme of this pathway, namely indoleamine-2,3-dioxygenase (IDO). Therefore, during depression, balancing neuroprotective versus neurotoxic TRYCATs and balancing activation of the immune response system (IRS) versus the compensatory immune response system is crucial for achieving better treatment outcomes. Furthermore, targeting the causes of TRYCAT pathway activation (immune activation and O&NS) is probably the most effective strategy to treat depression. In the present review, we aim to provide a comprehensive explanation of the impact of TRYCATs in terms of pathophysiology and treatment of MDD and MDE.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Tai Derek Yeung ◽  
Nicholas Penney ◽  
Luke Whiley ◽  
Hutan Ashrafian ◽  
Matthew R. Lewis ◽  
...  

AbstractThis study aims to explore the immediate effects of bariatric surgery on serum tryptophan–kynurenine pathway metabolites in individuals with type 2 diabetes and BMI > 30. With the goal of providing insight into the link between tryptophan pathway metabolites, type 2 diabetes, and chronic obesity-induced inflammation. This longitudinal study included 20 participants. Half were diagnosed with type 2 diabetes. 11 and 9 underwent RYGB and SG respectively. Blood samples were obtained at pre-operative and 3 months post-operative timepoints. Tryptophan and downstream metabolites of the kynurenine pathway were quantified with an ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionisation method. At 3 months post-operation, RYGB led to significant reductions in tryptophan, kynurenic acid and xanthurenic acid levels when compared to baseline. Significant reductions of the same metabolites after surgery were also observed in individuals with T2D irrespective of surgical procedure. These metabolites were significantly correlated with serum HbA1c levels and BMI. Bariatric surgery, in particular RYGB reduces serum levels of tryptophan and its downstream kynurenine metabolites. These metabolites are associated with T2D and thought to be potentially mechanistic in the systemic processes of obesity induced inflammation leading to insulin resistance. Its reduction after surgery is associated with an improvement in glycaemic control (HbA1c).


2022 ◽  
Vol 20 (4) ◽  
pp. 103-111
Author(s):  
A. V. Shestopalov ◽  
O. P. Shatova ◽  
M. S. Karbyshev ◽  
A. M. Gaponov ◽  
N. E. Moskaleva ◽  
...  

Aim. To assess the concentrations of bacterial and eukaryotic metabolites mainly involved in indole, kynurenine, and serotonin pathways of tryptophan metabolism in a cohort of patients with obesity. Materials and methods. Using high-performance liquid chromatography with mass spectrometric detection, the concentrations of several serum metabolites, such as kynurenine, kynurenic acid, anthranilic acid, xanthurenic acid, quinolinic acid, 5-hydroxyindole-3-acetate, tryptamine, serotonin, indole-3-lactate, indole-3-acetate, indole-3- butyrate, indole-3-carboxaldehyde, indole-3-acrylate, and indole-3-propionate, were analyzed in a cohort of obese patients compared with healthy volunteers.Results. It was found that serum levels of tryptophan metabolites of microbial and eukaryotic origin were significantly increased in obese patients. Therefore, the concentration of kynurenine in the blood serum in obese patients was 2,413 ± 855 nmol / l, while in healthy volunteers of the same age group, the level of kynurenine in the blood serum was 2,122 ± 863 nmol / l. In obese patients, two acids formed due to kynurenine metabolism; the concentrations of kynurenic and quinolinic acids were increased in the blood serum. The concentration of kynurenic acid in the blood serum in obese patients was 21.1 ± 9.26 nmol / l, and in healthy patients, it was 16.8 ± 8.37 nmol / l. At the same time, the level of quinolinic acid in the blood serum in obese patients was 73.1 ± 54.4 nmol / l and in healthy volunteers – 56.8 ± 34.1 nmol / l. Normally, the level of quinolinic acid is 3.4 times higher than the concentration of kynurenic acid, and in case of obesity, there is a comparable increase in these acids in the blood serum.From indole derivatives, mainly of microbial origin, the concentrations of indole-3-lactate, indole-3-butyrate, and indole-3-acetate were significantly increased in the blood serum of obese patients. In obese patients, the serum concentration of 5-hydroxyindole-3-acetate was elevated to 74.6 ± 75.8 nmol / l (in healthy volunteers – 59.4 ± 36.6 nmol / l); indole-3-lactate – to 523 ± 251 nmol / l (in healthy volunteers – 433 ± 208 nmol / l); indole-3-acetate – to 1,633 ± 1,166 nmol / l (in healthy volunteers – 1,186 ± 826 nmol / l); and indole-3-butyrate – to 4.61 ± 3.31 nmol / l (in healthy volunteers – 3.85 ± 2.51 nmol / l).Conclusion. In case of obesity, the utilization of tryptophan was intensified by both the microbiota population and the macroorganism. It was found that obese patients had higher concentrations of kynurenine, quinolinic and kynurenic acids, indole-3-acetate, indole-3-lactate, indole-3-butyrate, and 5-hydroxyindole-3-acetate. Apparently, against the background of increased production of proinflammatory cytokines by adipocytes in obese patients, the “kynurenine switch” was activated which contributed to subsequent overproduction of tryptophan metabolites involved in the immune function of the macroorganism. 


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7263
Author(s):  
Michel Bonnard ◽  
Bruno Boury ◽  
Isabelle Parrot

Ommochromes are one of the least studied groups of natural pigments, frequently confused with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been identified with physicochemical and structural characteristics similar to those of ommochromes. In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of melanins was excluded by the absence of characteristic by-products among the oxidation residues of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a complex association of porphyrins and ommochromes of potentially ommatin or ommin type.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3108
Author(s):  
Shih-Te Chuang ◽  
Kuan-Yi Li ◽  
Po-Wen Tu ◽  
Shang-Tse Ho ◽  
Cheng-Chih Hsu ◽  
...  

Mastitis in dairy cow significantly affects animal performance, ultimately reducing profitability. The reciprocal interrelationships among ruminal microbiota, metabolome, and mastitis combining early inflammatory factors (serum proinflammatory cytokines) in lactating dairy cows has not been explored, thus, this study evaluated these reciprocal interrelationships in early lactating Holstein dairy cows to identify potential microbial biomarkers and their relationship with ruminal metabolites. The ruminal fluid was sampled from 8 healthy and 8 mastitis cows for the microbiota and metabolite analyses. The critical ruminal microbial biomarkers and metabolites related to somatic cell counts (SCC) and serum proinflammatory cytokines were identified by the linear discriminant analysis effect size (LEfSe) algorithm and Spearman’s correlation analysis, respectively. The SCC level and proinflammatory cytokines positively correlated with Sharpea and negatively correlated with Ruminococcaceae UCG-014, Ruminococcus flavefaciens, and Treponema saccharophilum. Furthermore, the metabolites xanthurenic acid, and 1-(1H-benzo[d]imidazol-2-yl) ethan-1-ol positively correlated with microbial biomarkers of healthy cows, whereas, xanthine, pantothenic acid, and anacardic acid were negatively correlated with the microbial biomarkers of mastitis cows. In conclusion, Ruminococcus flavefaciens and Treponema saccharophilum are potential strains for improving the health of dairy cows. The current study provides a novel perspective to assist in targeting the ruminal microbiota with preventive/therapeutic strategies against inflammatory diseases in the future.


2021 ◽  
pp. 1-10
Author(s):  
Jason C. O’Connor ◽  
Grace A. Porter ◽  
Jason C. O’Connor

Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynurenine and serotonin pathways of tryptophan metabolism. Here, we characterize the temporal central and peripheral changes in tryptophan metabolism and concomitant depressive-like behavioural phenotype induced during the progression of chronic unpredictable stress (CUS). Mice were exposed to 0, 10, 20, or 30 days of CUS followed by a panel of behavioural assays to determine depressive-like phenotypes. Immediately after behavioural testing, plasma and brain tissue were collected for metabolic analysis. While anhedonia-like and anxiety-like behaviours were unaffected by stress, nesting behaviour and cognitive deficits became apparent in response to CUS exposure. While CUS caused a transient reduction in circulating quinolinic acid, no other tryptophan metabolites significantly changed in response to CUS. In the brain, tryptophan, kynurenine, picolinic acid, and 5-hydroxyindoleacetic acid concentrations were significantly elevated in CUS-exposed mice compared with non-stress control animals, while kynurenic acid, xanthurenic acid, and serotonin decreased in CUS-exposed mice. Metabolic turnover of serotonin to the major metabolite 5-hydroxyindoleacetic acid was markedly increased in response to CUS. These results suggest that CUS impairs hippocampal-dependent working memory and enhances nascent nesting behaviour in C57BL/6J male mice, and these behaviours are associated with increased brain kynurenine pathway metabolism leading to accumulation of picolinic acid and a significant reduction in serotonin levels.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3253
Author(s):  
Heeju Lee ◽  
Bora Lee ◽  
Yeonhee Kim ◽  
Sohyun Min ◽  
Eunjoo Yang ◽  
...  

In our previous study, intravenous (IV) injection of selenium alleviated breast cancer-related lymphedema (BCRL). This secondary analysis aimed to explore the metabolic effects of selenium on patients with BCRL. Serum samples of the selenium-treated (SE, n = 15) or the placebo-controlled (CTRL, n = 14) groups were analyzed by ultra-high-performance liquid chromatography with Q-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). The SE group showed a lower ratio of extracellular water to segmental water (ECW/SW) in the affected arm to ECW/SW in the unaffected arm (arm ECW/SW ratio) than the CTRL group. Metabolomics analysis showed a valid classification at 2-weeks and 107 differential metabolites were identified. Among them, the levels of corticosterone, LTB4-DMA, and PGE3—which are known anti-inflammatory compounds—were elevated in the SE group. Pathway analysis demonstrated that lipid metabolism (glycerophospholipid metabolism, steroid hormone biosynthesis, or arachidonic acid metabolism), nucleotide metabolism (pyrimidine or purine metabolism), and vitamin metabolism (pantothenate and CoA biosynthesis, vitamin B6 metabolism, ascorbate and aldarate metabolism) were altered in the SE group compared to the CTRL group. In addition, xanthurenic acid levels were negatively associated with whole blood selenium level (WBSe) and positively associated with the arm ECW/SW. In conclusion, selenium IV injection improved the arm ECW/SW ratio and altered the serum metabolic profiles in patients with BCRL, and improved the anti-inflammatory process in lipid, nucleotide and vitamin pathways, which might alleviate the symptoms of BCRL.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Pierre-antoine Dugué ◽  
Allison Hodge ◽  
Per Ueland ◽  
Øivind Midttun ◽  
Arve Ulvik ◽  
...  

Abstract Background Inflammation is a key feature of aging and a cause of numerous diseases. We investigated the association of 35 blood markers involved in inflammatory processes with age and mortality and developed a signature of ‘inflammaging’. Methods Thirty-five blood markers relating to the kynurenine pathway, vitamin status, and inflammation were measured in 976 participants in the Melbourne Collaborative Cohort Study at baseline (1990-1994, median age 59 years) and follow-up (2003-2007, median age 70 years). Associations of each marker with age and all-cause mortality were assessed using linear and Cox regression, respectively. A signature of inflammaging was obtained via Lasso regression of age on the markers and tested for association with mortality; we compared mortality associations for this signature and two weighted scores across all markers associated with age and mortality, respectively. Results Most markers (29/35) were associated with age, with strongest associations observed for cystatin C, neopterin, quinolinic acid, and the kynurenine/tryptophan ratio, PAr index, and 3-hydroxykynurenine/xanthurenic acid ratio. Many markers (14/35) showed strong associations with mortality in particular neopterin, quinolinic acid, HK/XA, PAr index, CRP, IL-6 and KTr. The inflammaging signature included six markers and showed strong association with mortality (HR = 1.5, 95%CI: 1.3-1.7), almost as strong as the association of weighted scores combining all measured markers. Conclusions Our study highlights the key role played by markers of the kynurenine pathway and vitamin B6 catabolism in aging, along with other well-established inflammation-related markers. Key messages A signature of ‘inflammaging’ based on 6 markers may be useful to better predict mortality.


Diabetologia ◽  
2021 ◽  
Vol 64 (11) ◽  
pp. 2445-2457
Author(s):  
Lieke Bakker ◽  
Inez H. G. B. Ramakers ◽  
Martin P. J. van Boxtel ◽  
Miranda T. Schram ◽  
Coen D. A. Stehouwer ◽  
...  

Abstract Aims/hypothesis Studies investigating associations between kynurenines and cognitive function have generally been small, restricted to clinical samples or have found inconsistent results, and associations in the general adult population, and in individuals with type 2 diabetes in particular, are not clear. Therefore, the aim of the present study was to investigate cross-sectional associations between plasma kynurenines and cognitive function in a cohort of middle-aged participants with normal glucose metabolism, prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes. Methods Plasma kynurenines were quantified in 2358 participants aged 61 ± 8 years. Cross-sectional associations of kynurenines with cognitive impairment and cognitive domain scores were investigated using logistic, multiple linear and restricted cubic spline regression analyses adjusted for several confounders. Results Effect modification by glucose metabolism status was found for several associations with cognitive impairment, hence analyses were stratified. In individuals with prediabetes, 3-hydroxykynurenine (OR per SD 0.59 [95% CI 0.37, 0.94]) and 3-hydroxyanthranilic acid (0.67 [0.47, 0.96]) were associated with lower odds of cognitive impairment after full adjustment. In individuals with type 2 diabetes, kynurenine (0.80 [0.66, 0.98]), 3-hydroxykynurenine (0.82 [0.68, 0.99]), kynurenic acid (0.81 [0.68, 0.96]), xanthurenic acid (0.73 [0.61, 0.87]) and 3-hydroxyanthranilic acid (0.73 [0.60, 0.87]) were all associated with lower odds of cognitive impairment. Kynurenic acid (β per SD 0.07 [95% CI 0.02, 0.13]) and xanthurenic acid (0.06 [0.01, 0.11]) were also associated with better executive function/attention. No associations were observed in individuals with normal glucose metabolism. Conclusions/interpretation Several kynurenines were cross-sectionally associated with lower odds of cognitive impairment and better cognitive functioning in type 2 diabetes, while less widespread associations were seen in prediabetes. Low levels of kynurenines might be involved in the pathway of type 2 diabetes and cognitive decline but this needs further studies. Graphical abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hala E. Hussein ◽  
Wendell C. Johnson ◽  
Naomi S. Taus ◽  
Janaina Capelli-Peixoto ◽  
Carlos E. Suarez ◽  
...  

Abstract Background Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is critically important for developing bovine babesiosis control strategies. Results In this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite development within tick midguts. Conclusions Similar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite's biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible live vaccines to control bovine babesiosis. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document