Quantification of the steady-state plasma concentrations of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia using a novel HPLC method and the effects of CYPs and ABC transporters polymorphisms

Author(s):  
Yumiko Akamine ◽  
Yuka Sugawara-Kikuchi ◽  
Tsukasa Uno ◽  
Tetsuo Shimizu ◽  
Masatomo Miura

Background This study developed a novel high-performance liquid chromatography (HPLC) method for the simultaneous quantification of clozapine and its active metabolite, N-desmethylclozapine, in human plasma and investigated the effects of various factors, including genetic polymorphisms in cytochrome P450 (CYP) 2D6, CYP3A5, ABCB1 and ABCG2, on the steady-state plasma trough concentrations (C0) of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia. Methods Forty-five patients had been receiving fixed doses of clozapine for at least four weeks. The CYP2D6 ( CYP2D6*2, CYP2D6*5, CYP2D6*10), CYP3A5 ( CYP3A5*3), ABCB1 (1236C > T, 2677G > T/A, 3435C > T) and ABCG2 (421 C > A) genotypes were identified by polymerase chain reaction. Results The within- and between-day coefficients of variation (CV) were less than 11.0%, and accuracy was within 9.0% over the linear range from 10 to 2500 ng/mL for both analytes, and their LOQs were each 10 ng/mL. The median C0/dose (C0/D) ratios of clozapine were significantly higher in patients with the ABCG2 421 A allele than in those with the 421 C/C genotype ( P = 0.010). However, there were no significant differences in C0/D ratios of clozapine and N-desmethylclozapine among ABCB1, CYP2D6 or CYP3A5 genotypes. In multiple regression analysis, including polymorphisms, age, body weight and biochemical data of patients, the ABCG2 polymorphism alone was correlated with the C0/D ratios of clozapine ( R2 = 0.139, P = 0.016). Conclusions Among the various CYPs and drug transporters, BCRP appeared to most strongly influence clozapine exposure. Knowledge of the patient’s ABCG2 421 C > A genotype before initiating therapy may be useful when making dosing decisions aimed at achieving optimal clozapine exposure.

2020 ◽  
Vol 58 (10) ◽  
pp. 915-921
Author(s):  
Sho Ohkubo ◽  
Yumiko Akamine ◽  
Tadashi Ohkubo ◽  
Yuka Kikuchi ◽  
Masatomo Miura

Abstract Here, we developed a novel high-performance liquid chromatography (HPLC) method for quantification of perampanel in clinical practice and investigated the relationships between the plasma concentrations of perampanel obtained by this HPLC method and the CYP3A4*1G polymorphism. The developed HPLC method was validated based on US Food and Drug Administration. The developed HPLC method could be performed with a plasma volume of only 200 μL and had a limit of quantification (LOQ) of 2.5 ng/mL. The coefficients of variation (CVs) for intra- and inter-day assays were less than 10.4 and 7.2%, respectively, and the accuracy was <2.4% for both assays. A total of 12 patients who received 2 mg perampanel had C0 values ranging from 70.5 to 451 ng/mL, and the CV showed a large variation of 51.4%. No correlations were observed between the dose-adjusted C0 and the CYP3A4*1G polymorphism. This method was superior to previously reported methods in terms of plasma volume and LOQ and was clinically applicable. Perampanel showed high variations in individual plasma concentrations; however, individual differences could not be predicted from analysis of the CYP3A4*1G polymorphism before perampanel administration. Therefore, after beginning perampanel treatment, the dose should be determined based on the observed plasma concentration.


2019 ◽  
Vol 52 (05) ◽  
pp. 237-244
Author(s):  
Masataka Shinozaki ◽  
Jason Pierce ◽  
Yuki Hayashi ◽  
Takashi Watanabe ◽  
Taro Sasaki ◽  
...  

Abstract Introduction  To investigate the metabolism of mirtazapine (MIR) in Japanese psychiatric patients, we determined the plasma levels of MIR, N-desmethylmirtazapine (DMIR), 8-hydroxy-mirtazapine (8-OH-MIR), mirtazapine glucuronide (MIR-G), and 8-hydroxy-mirtazapine glucuronide (8-OH-MIR-G). Methods  Seventy-nine Japanese psychiatric patients were treated with MIR for 1–8 weeks to achieve a steady-state concentration. Plasma levels of MIR, DMIR, and 8-OH-MIR were determined using high-performance liquid chromatography. Plasma concentrations of MIR-G and 8-OH-MIR-G were determined by total MIR and total 8-OH-MIR (i. e., concentrations after hydrolysis) minus unconjugated MIR and unconjugated 8-OH-MIR, respectively. Polymerase chain reaction was used to determine CYP2D6 genotypes. Results  Plasma levels of 8-OH-MIR were lower than those of MIR and DMIR (median 1.42 nmol/L vs. 92.71 nmol/L and 44.96 nmol/L, respectively). The plasma levels (median) of MIR-G and 8-OH-MIR-G were 75.00 nmol/L and 111.60 nmol/L, giving MIR-G/MIR and 8-OH-MIR-G/8-OH-MIR ratios of 0.92 and 59.50, respectively. Multiple regression analysis revealed that smoking was correlated with the plasma MIR concentration (dose- and body weight–corrected, p=0.040) and that age (years) was significantly correlated with the plasma DMIR concentration (dose- and body weight–corrected, p=0.018). The steady-state plasma concentrations of MIR and its metabolites were unaffected by the number of CYP2D6*5 and CYP2D6*10 alleles. Discussion  The plasma concentration of 8-OH-MIR was as low as 1.42 nmol/L, whereas 8-OH-MIR-G had an approximate 59.50 times higher concentration than 8-OH-MIR, suggesting a significant role for hydroxylation of MIR and its glucuronidation in the Japanese population.


Sign in / Sign up

Export Citation Format

Share Document