scholarly journals Simulation and experimental research based on carrier gas flow rate on the influence of four-channel coaxial nozzle flow field

2020 ◽  
pp. 002029402096423
Author(s):  
Shi Rui Guo ◽  
Qian Qian Yin ◽  
Lu Jun Cui ◽  
Xiao Lei Li ◽  
Ying Hao Cui ◽  
...  

This paper investigates the influence of carrier gas flow on the external flow field of coaxial powder feeding nozzle. FLUENT software was adopted to establish gas-solid two-phase flow. The simulation of powder stream field under different carrier gas flow was also carried out. Results show that the larger the flow of carrier gas is, the higher the gas flow field velocity at the nozzle outlet is. At the same time, the concentration at the convergence point is lower, and the convergent point is maintained at 0.015 m. Under the condition of 4 L/min, the powder flow convergence is good. When it exceeds 4 L/min, powder spot diameter increases. The experiment of powder aggregation and laser cladding forming were completed, which shows that the forming effect is the best one under the condition of 4 L/min. It is consistent with the simulation analysis results and has a high reference to the optimization of the process parameters of coaxial nozzle.

Author(s):  
Michael Pien ◽  
Steven Lis ◽  
Radha Jalan ◽  
Marvin Warshay ◽  
Suresh Pahwa

Higher efficiency operation of PEM fuel cells needs an advanced passive way to remove product water. Water flooding in gas flow channels reduces efficiency and needs to be mitigated by a support of balance of plant design and components which results in parasitic power losses. ElectroChem’s Integrated Flow Field (IFF) design with the integration of hydrophobic and hydrophilic matrix has been proven to solve these challenges with no impact on the performance. The hydrophobic and hydrophilic matrix facilitates two phase (gas and liquid) flow to and away from the interface between the electrode membrane assembly and the flow field. A phase-separation feature of the IFF allowed the fuel cells to operate on a flow rate at its consumption rate. The IFF fuel cell has demonstrated operation at the ideal one stoichiometric ratio with 100% gas utilization and orientation independent. The IFF also served as gas humidifier through the creation of simultaneous distribution of gas and water within the cell. The self-humidification capability keeps the cell operating without the humidity of the input gas. The IFF design also enhanced the performance of water electrolysis which is a reverse process of fuel cell. The IFF supported the passive water feed to the cell and gas separation from the cell.


1966 ◽  
Vol 38 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Gary. Horlick ◽  
W. E. Harris ◽  
H. W. Habgood

1985 ◽  
Vol 8 (9) ◽  
pp. 580-584 ◽  
Author(s):  
R. E. Kaiser ◽  
R. I. Rieder ◽  
Lin Leming ◽  
L. Blomberg ◽  
P. Kusz

2013 ◽  
Vol 39 (3) ◽  
pp. 258-261 ◽  
Author(s):  
A. G. Kurenya ◽  
D. V. Gorodetskiy ◽  
V. E. Arkhipov ◽  
A. V. Okotrub

2015 ◽  
Vol 430 ◽  
pp. 87-92 ◽  
Author(s):  
Ming Li ◽  
Jingyun Wang ◽  
Kan Li ◽  
Yingjie Xing ◽  
H.Q. Xu

2016 ◽  
Vol 18 (3) ◽  
pp. 88-96 ◽  
Author(s):  
Najaf Ali ◽  
Mahmood Saleem ◽  
Khurram Shahzad ◽  
Sadiq Hussain ◽  
Arshad Chughtai

Abstract The yield and composition of pyrolysis products depend on the characteristics of feed stock and process operating parameters. Effect of particle size, reaction temperature and carrier gas flow rate on the yield of bio-oil from fast pyrolysis of Pakistani maize stalk was investigated. Pyrolysis experiments were performed at temperature range of 360-540°C, feed particle size of 1-2 mm and carrier gas fl ow rate of 7.0-13.0 m3/h (0.61.1 m/s superficial velocity). Bio-oil yield increased with the increase of temperature followed by a decreasing trend. The maximum yield of bio-oil obtained was 42 wt% at a temperature of 490°C with the particle size of around 1.0 mm and carrier gas flow rate of 11.0 m3/h (0.9 m/s superficial velocity). High temperatures resulted in the higher ratios of char and non-condensable gas.


Sign in / Sign up

Export Citation Format

Share Document