scholarly journals Swing up and stabilization control of rotary inverted pendulum based on energy balance, fuzzy logic, and LQR controllers

2021 ◽  
Vol 54 (9-10) ◽  
pp. 1356-1370
Author(s):  
Muhammad Abdullah ◽  
Arslan Ahmed Amin ◽  
Sajid Iqbal ◽  
Khalid Mahmood-ul-Hasan

Rotary Inverted Pendulum (RIP) mimics the behavior of many practical control systems like crane mechanism, segway, unicycle robot, traction control in vehicles, rocket stabilization, and launching. RIP is a fourth-order nonlinear open-loop unstable dynamical system and is widely used for testing the effectiveness of the newly developed control algorithms. In this paper, a Hybrid Control Scheme (HCS) based on energy balance and fuzzy logic controllers is proposed to implement the swing up and stabilization control of RIP. In the proposed control scheme, the fuzzy logic-based state feedback gains are dynamically tuned in real-time by minimizing the absolute error between the desired and actual states to get robust control performance. The proposed HCS is also compared with the conventional Linear Quadratic Controller (LQR) for this application. The comparative results show that the proposed fuzzy logic-based hybrid control scheme gives the optimal control performance in terms of achieving satisfactory transient, steady-state, and robust responses from a given RIP system, as compared to the conventional LQR based control scheme. The proposed control scheme is also relatively less complex with a low computational cost and provides desired response characteristics as compared to the existing ones in the literature.

2018 ◽  
Vol 61 ◽  
pp. 00007
Author(s):  
Ibrahim Farouk Bouguenna ◽  
Ahmed Azaiz ◽  
Ahmed Tahour ◽  
Ahmed Larbaoui

In this paper a neuro-fuzzy-sliding mode control (NFSMC) with extended state observer (ESO) technique; is designed to guarantee the traction of an electric vehicle with two distinct permanent magnet synchronous motor (PMSM). Each PMSM systems (source-convertermotor) are attached to an electronic differential (ED), in order to adjust the senses of direction of the vehicle, and sustain a stable speed by adapting the difference in velocity of each motor-wheel according to the direction in the case of a turn. Two types of controllers are employed by a hybrid control scheme to assure the control and the performance of the vehicle. This hybrid control scheme guarantees the stability of the vehicle by ED, reduces the chattering phenomena in the PMSM electric motor, and improves the disturbance rejection ability which employs tow types of controllers. The neuro-fuzzy sliding mode control on the direct current loop and ESO controller on the speed loop, and the quadratic current loop; taking into account the dynamic of the vehicle. Simulation runs under Matlab/Simulink to assess the efficiency, and strength of the recommended control method on the closed loop system.


Author(s):  
P. F. Le Roux ◽  
R.C. Bansal

An electrical network constantly faces unforeseen events such as faults on lines, loss of load and loss of generation. Under-frequency load shedding and generator tripping are traditional methods used to stabilise a network when a transient fault occurs. These methods will prevent any network instability by shedding load or tripping the most critical generator at a calculated time when required. By executing these methods, the network can be stabilised in terms of balancing the generation and the load of a power system. A hybrid control scheme is proposed where the traditional methods are combined to reduce the stress levels exerted on the network and to minimise the load to be shed.


2013 ◽  
Vol 46 (32) ◽  
pp. 654-659 ◽  
Author(s):  
Navin John Mathew ◽  
K. Koteswara Rao ◽  
N. Sivakumaran

Author(s):  
Jin-Wei Liang ◽  
Hung-Yi Chen ◽  
Lyu-Cyuan Zeng

A hybrid control scheme that combines a self-tuning PID-feedback loop and TDC-based feedforward scheme is proposed in this study to cope with an active pneumatic vibration isolator. In order to establish an effective TDC feedforward control a reliable mathematical model of the pneumatic isolator is required and developed firstly. Numerical and experimental investigations on the validity of the mathematical model are performed. It is found that although slight discrepancy exists between predicted and observed behaviors of the system, the overall model performance is acceptable. The resultant model is then applied in the design of the TDC feedforward scheme. A neuro-based adaptive PID control is integrated with the TDC feedforward algorithm to form the hybrid control. Numerical and experimental isolation tests are carried out to examine the suppression performances of the proposed hybrid control scheme. The results show that the proposed hybrid control method outperforms solely TDC feedforward while the latter outperforms the passive isolation system. Moreover, the proposed hybrid control scheme can suppress the vibration near the system’s resonance.


Sign in / Sign up

Export Citation Format

Share Document