Dielectric strength and mechanical properties of epoxy resin filled with self-propagating high-temperature synthesized Al2O3/SiC nanoparticles

2019 ◽  
Vol 54 (17) ◽  
pp. 2231-2243
Author(s):  
M Hoseini ◽  
G Dini ◽  
M Bahadori

In this study, the rice husk as a source of silica was used to synthesize the Al2O3/SiC composite via the self-propagation high-temperature synthesis (SHS) process. Then, the particle size of the synthesized product was reduced to the nanoscale using a planetary ball mill. Finally, different amounts (5, 10, and 15 wt.%) of Al2O3/SiC nanoparticles were incorporated into an epoxy resin in order to improve the mechanical properties and the dielectric strength of fabricated epoxy-based composites. The results indicated that the Al2O3/SiC composite was successfully synthesized by the SHS process from a mixture of the rice husk ash, Al, and carbon black powders as starting materials. The average size of the synthesized Al2O3/SiC particles decreased to 80 nm after 12-h ball milling. Also, the mechanical properties of the fabricated epoxy-based composite samples were improved with the addition of Al2O3/SiC nanoparticles in the investigated range in comparison with the pure epoxy sample. Additionally, the overall dielectric strength of the fabricated epoxy-based composites containing 5–15 wt.% of Al2O3/SiC nanoparticles was higher than that of the pure epoxy. These results were interpreted in terms of the synthesis mechanism of Al2O3/SiC composite via the SHS process, the rice husk ash structure, the interfacial bonding between the polymer chains and the surface of nanoparticles, and the insulation nature of the synthesized nanoparticles.

2020 ◽  
Vol 29 (1) ◽  
pp. 177-185
Author(s):  
Neeraj Bisht ◽  
Prakash Chandra Gope

AbstractPresent work studies the effect of particle reinforcement on fracture toughness of bio-composites. The filler used has been taken as rice husk. Epoxy resin has been taken as matrix material. Composites with varying filler loading of 10, 20, 30 and 40 wt.% were fabricated. The fracture toughness was seen to be increasing with increase in filler loading. However beyond 20% there was a decrease in fracture toughness with increase in filler loading. The effect of fibre treatment on toughness was also observed. Rice husk fibres pre-treated with NaOH were used. It was observed that fracture toughness further improved due to treatment. The increase in fracture toughness was significant. Fracture toughness increased from 1.072 to 2.7465 MPa√mm for 20% reinforcement and after treatment it increased to 2.876 MPa√mm. It was observed that concentration of treatment media also affects the fracture toughness. Further the effect of hybridization was observed by addition of rice husk ash as a secondary reinforcement. The fracture toughness of the resulting composites was remarkably higher than that of pure epoxy.


2017 ◽  
Vol 904 ◽  
pp. 93-97 ◽  
Author(s):  
Morteza Hoseini ◽  
Ghasem Dini ◽  
Azam Fatemi

In this study, silica obtained from the rice husk was used to synthesis of Al2O3/SiC nanoparticles. For this reason, the ash obtained from the burning of the rice husk which contains more than 93 wt. % silica, aluminum and carbon powders with the molar ratios of 3:4:6 were mixed and then compacted into pellets by using a cylindrical die under a pressure 50MPa. In order to conduct the self-propagating high-temperature synthesis (SHS), the produced pellets were placed in an electrical furnace at 850°C under the argon gas atmosphere. Then, a planetary ball milling for 4 to 24h was used to decrease the particle size of the synthesized composite. The results of XRF, XRD, SEM and DLS investigations shown that the rice husk ash can be used to fabricate Al2O3/SiC nanoparticles with an average particle size of about 80 to 65nm via SHS process and ball-milling for 12 to 24h.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed Sabah Ali ◽  
M. A. Azmah Hanim ◽  
S. M. Tahir ◽  
C. N. A. Jaafar ◽  
Norkhairunnisa Mazlan ◽  
...  

A porous ceramic is made from composite materials which consist of alumina and commercial rice husk ash. This type of ceramics is obtained by mixing the commercial rice husk ash as a source of silica (SiO2) and a pore forming agent with alumina (Al2O3) powder. To obtain this type of ceramic, a solid-state technique is used with sintering at high temperature. This study also investigated the effects of the rice husk ash ratios on the mechanical properties, porosity, and microstructure. The results showed that, by increasing the content of the rice husk ash from 10 to 50 wt%, there is an increase in the porosity from 42.92% to 49.04%, while the mechanical properties decreased initially followed by an increase at 30 wt% and 50 wt%; the hardness at 20 wt% of the ash content was recorded at 101.90 HV1. When the ash content was increased to 30 wt% and 50 wt%, the hardness was raised to 150.92 HV1and 158.93 HV1, respectively. The findings also revealed that the tensile and compressive strengths experienced a decrease at 10 wt% of the ash content and after that increase at 30 wt% and 50 wt% of rice husk ash. XRD analysis found multiple phases of ceramic formation after sintering for the different rice husk ash content.


2017 ◽  
Vol 66 (3-4) ◽  
pp. 157-164 ◽  
Author(s):  
Weihong Wang ◽  
◽  
Yunfang Meng ◽  
Dezhi Wang ◽  
◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Banumathi S. ◽  
Karthik T. S. ◽  
Sasireka M. ◽  
Kiran Ramaswamy ◽  
Vishnu J. ◽  
...  

Epoxy resin mixed with rice husk ash and quartz powder increases its dielectric strength. This paper presents the dielectric properties of the press board coated with this epoxy mixture. In this work, the press board, which is used in the transformer, is coated with three components: epoxy resin, rice husk ash, and quartz powder. The nanometer-sized quartz powder and rice husk ash are mixed in the particular ratio with the epoxy resin. The mixture of epoxy resin, quartz powder, and rice husk ash is coated on both sides of the press board. The dielectric constant, volume resistivity, and Tan Delta (dissipation factor) of the coated press board are compared with the noncoated press board. The results reveal that the coated board is having high dielectric constant and volume resistivity when compared to the noncoated board.


2017 ◽  
Vol 67 (326) ◽  
pp. 117 ◽  
Author(s):  
M. A. Villaquirán-Caicedo ◽  
R. Mejía de Gutiérrez ◽  
N. C. Gallego

Geopolymers were produced using an environmentally friendly alkali activator (based on Rice Husk Ash and potassium hydroxide). Aluminosilicates particles, carbon and ceramic fibres were used as reinforcement materials. The effects of reinforcement materials on the flexural strength, linear-shrinkage, thermophysical properties and microstructure of the geopolymers at room and high temperature (1200 ÅãC) were studied. The results indicated that the toughness of the composites is increased 110.4% for geopolymer reinforced by ceramic fibres (G-AF) at room temperature. The presence of particles improved the flexural behaviour 265% for geopolymer reinforced by carbon fibres and particles after exposure to 1200 .C. Linear-shrinkage for geopolymer reinforced by ceramic fibres and particles and the geopolymer G-AF compared with reference sample (without fibres and particles) is improved by 27.88% and 7.88% respectively at 900 ÅãC. The geopolymer materials developed in this work are porous materials with low thermal conductivity and good mechanical properties with potential thermal insulation applications for building applications.


2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Sign in / Sign up

Export Citation Format

Share Document