scholarly journals Investigation on Dielectric Properties of Press Board Coated with Epoxy Resin, Quartz, and Rice Husk Ash

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Banumathi S. ◽  
Karthik T. S. ◽  
Sasireka M. ◽  
Kiran Ramaswamy ◽  
Vishnu J. ◽  
...  

Epoxy resin mixed with rice husk ash and quartz powder increases its dielectric strength. This paper presents the dielectric properties of the press board coated with this epoxy mixture. In this work, the press board, which is used in the transformer, is coated with three components: epoxy resin, rice husk ash, and quartz powder. The nanometer-sized quartz powder and rice husk ash are mixed in the particular ratio with the epoxy resin. The mixture of epoxy resin, quartz powder, and rice husk ash is coated on both sides of the press board. The dielectric constant, volume resistivity, and Tan Delta (dissipation factor) of the coated press board are compared with the noncoated press board. The results reveal that the coated board is having high dielectric constant and volume resistivity when compared to the noncoated board.

2016 ◽  
Vol 16 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Nawarat Piladaeng ◽  
Niwat Angkawisittpan ◽  
Sahalaph Homwuttiwong

Abstract This paper deals with an investigation of the dielectric properties of concretes that includes rice husk ash using a planar coaxial probe. The planar coaxial probe has a planar structure with a microstrip and coaxial features. The measurement was performed over the frequency range of 0.5-3.5 GHz, and concrete specimens with different percentages of rice husk ash were tested. The results indicated that the dielectric constant of the concretes was inversely proportional to the frequency, while the conductivity was proportional to the frequency. The dielectric constant decreased with the increasing age of the concrete at the frequency of 1 GHz. The conductivity of the concrete decreased with the increasing age of the concrete at the frequency of 3.2 GHz. In addition, the dielectric constant and the conductivity decreased when the compressive strength increased. It was also shown that the obtained dielectric properties of the concrete could be used to investigate the relationship between the compressive strength and age of the concrete. Moreover, there is an opportunity to apply the proposed probe to determine the dielectric properties of other materials.


Author(s):  
A. PRATAP ◽  
N. J. JOSHI ◽  
P. B. RAKSHIT ◽  
G. S. GREWAL ◽  
V. SHRINET

Rapid growth of electronic industry requires development of new materials that combine the high dielectric constant intrinsic to ferroelectric ceramic materials with easy processing characteristics of polymers. Ceramic-polymeric composites possess interesting properties for a variety of electronic applications including passive electronic devices. In fact, polymer-ceramic materials have drawn lot attention for use in microelectronic packaging, because they can give higher performance with lower cost, size and weight. In this work, attempts are made to prepare ceramic polymer composites followed by characterization of dielectric properties. The Barium Titanate ceramic powders are synthesized using the hydrothermal process. Crystal structure and crystallite size of particles are determined using X-ray diffraction. Silane treatment is carried out on Barium Titanate powder to increase its compatibility with polymer, followed with preparation of ceramic polymer composites. Epoxy and polyvinyledene fluoride (PVDF) polymers are used as matrices for preparation of the composites. The proportion of nanopowder is varied from 60 to 90 wt%. Dielectric properties such as volume resistivity, dielectric constant, dissipation factor are evaluated. Results indicate that the dielectric constant and dissipation factor vary between 18 -140 and 0.01 to 0.09, respectively as the relative ratio of polymer and silane modified Barium Titanate is varied. Specifically, at 90 wt% of 0.1 wt% silane modified Barium Titanate, the highest dielectric constant of 140 along with dissipation factor of 0.07 is obtained in the epoxy based system.


Cerâmica ◽  
1998 ◽  
Vol 44 (287-288) ◽  
pp. 136-140
Author(s):  
Jamilson Pinto Medeiros ◽  
Elcio Correia de Souza Tavares ◽  
Uilame Umbelino Gomes ◽  
Wilson Acchar

Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.


2019 ◽  
Vol 54 (17) ◽  
pp. 2231-2243
Author(s):  
M Hoseini ◽  
G Dini ◽  
M Bahadori

In this study, the rice husk as a source of silica was used to synthesize the Al2O3/SiC composite via the self-propagation high-temperature synthesis (SHS) process. Then, the particle size of the synthesized product was reduced to the nanoscale using a planetary ball mill. Finally, different amounts (5, 10, and 15 wt.%) of Al2O3/SiC nanoparticles were incorporated into an epoxy resin in order to improve the mechanical properties and the dielectric strength of fabricated epoxy-based composites. The results indicated that the Al2O3/SiC composite was successfully synthesized by the SHS process from a mixture of the rice husk ash, Al, and carbon black powders as starting materials. The average size of the synthesized Al2O3/SiC particles decreased to 80 nm after 12-h ball milling. Also, the mechanical properties of the fabricated epoxy-based composite samples were improved with the addition of Al2O3/SiC nanoparticles in the investigated range in comparison with the pure epoxy sample. Additionally, the overall dielectric strength of the fabricated epoxy-based composites containing 5–15 wt.% of Al2O3/SiC nanoparticles was higher than that of the pure epoxy. These results were interpreted in terms of the synthesis mechanism of Al2O3/SiC composite via the SHS process, the rice husk ash structure, the interfacial bonding between the polymer chains and the surface of nanoparticles, and the insulation nature of the synthesized nanoparticles.


2020 ◽  
Vol 29 (1) ◽  
pp. 177-185
Author(s):  
Neeraj Bisht ◽  
Prakash Chandra Gope

AbstractPresent work studies the effect of particle reinforcement on fracture toughness of bio-composites. The filler used has been taken as rice husk. Epoxy resin has been taken as matrix material. Composites with varying filler loading of 10, 20, 30 and 40 wt.% were fabricated. The fracture toughness was seen to be increasing with increase in filler loading. However beyond 20% there was a decrease in fracture toughness with increase in filler loading. The effect of fibre treatment on toughness was also observed. Rice husk fibres pre-treated with NaOH were used. It was observed that fracture toughness further improved due to treatment. The increase in fracture toughness was significant. Fracture toughness increased from 1.072 to 2.7465 MPa√mm for 20% reinforcement and after treatment it increased to 2.876 MPa√mm. It was observed that concentration of treatment media also affects the fracture toughness. Further the effect of hybridization was observed by addition of rice husk ash as a secondary reinforcement. The fracture toughness of the resulting composites was remarkably higher than that of pure epoxy.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2451
Author(s):  
Jianwen Zhang ◽  
Dongwei Wang ◽  
Lujia Wang ◽  
Wanwan Zuo ◽  
Lijun Zhou ◽  
...  

To study the effect of hyperbranched polyester with different kinds of terminal groups on the thermomechanical and dielectric properties of silica–epoxy resin composite, a molecular dynamics simulation method was utilized. Pure epoxy resin and four groups of silica–epoxy resin composites were established, where the silica surface was hydrogenated, grafted with silane coupling agents, and grafted with hyperbranched polyester with terminal carboxyl and terminal hydroxyl, respectively. Then the thermal conductivity, glass transition temperature, elastic modulus, dielectric constant, free volume fraction, mean square displacement, hydrogen bonds, and binding energy of the five models were calculated. The results showed that the hyperbranched polyester significantly improved the thermomechanical and dielectric properties of the silica–epoxy composites compared with other surface treatments, and the terminal groups had an obvious effect on the enhancement effect. Among them, epoxy composite modified by the hyperbranched polyester with terminal carboxy exhibited the best thermomechanical properties and lowest dielectric constant. Our analysis of the microstructure found that the two systems grafted with hyperbranched polyester had a smaller free volume fraction (FFV) and mean square displacement (MSD), and the larger number of hydrogen bonds and greater binding energy, indicating that weaker strength of molecular segments motion and stronger interfacial bonding between silica and epoxy resin matrix were the reasons for the enhancement of the thermomechanical and dielectric properties.


2012 ◽  
Vol 476-478 ◽  
pp. 665-669 ◽  
Author(s):  
Li Yang ◽  
Miao Yin ◽  
Xiu Yun Li ◽  
Han Bing Ma

In this paper, a type of nanoporous polyhedral oligomeric silisesquioxanes (POSS) containing eight functional groups have been synthesized and mixed with diglycidyl ether of bisphenol A (DGEBA) to form epoxy resin networks with nanostructures. The cured octa(aminophenyl) silsesquioxane (1c-POSS) and DGEBA system inherently possesses higher thermal stability and higher char yield than the control epoxy resins. Furthermore, the dielectric constant of the 1c-POSS/DGEBA material (4.36) is substantially lower than that of the neat epoxy resins (4.64) as a consequence the presence of nanoporous POSS cubes in the epoxy matrix.


2019 ◽  
Vol 9 (14) ◽  
pp. 2926
Author(s):  
Jaroslav Hornak ◽  
Václav Mentlík ◽  
Pavel Trnka ◽  
Pavol Šutta

This paper deals with the topic of composite insulation materials for rotating machines and it is primarily pointed to the synthesis of new three-component insulation system. In connection with this research, the basic components of the insulation system are selected and described by different diagnostic methods. The proposed insulation material is composed of epoxy resin based on bisphenol-A diglycidyl ether, magnesium oxide nanofiller (1 wt %) with its own surface treatment technology using epoxysilane coupling agent ( γ -glycidoxypropyltrimethoxysilane) and polyethylene naphthalate as a reinforcing component. Following the defined topic of the paper, the proposed three-component insulation system is confronted with commonly used insulating systems (PET reinforced and Glass reinforced mica composites) in order to verify the basic dielectric properties (dielectric strength, volume resistivity, dissipation factor) and other parameters determined from phenomenological voltage and current signals, respectively.


2007 ◽  
Vol 539-543 ◽  
pp. 1038-1042 ◽  
Author(s):  
Hoy Yul Park ◽  
Dong Pil Kang ◽  
Myeong Sang Ahn ◽  
Hee Woong Lee ◽  
Seog Young Yoon ◽  
...  

This paper presents the effects of fillers on electrical properties of PTFE composites for nozzle of circuit breaker. PTFE has been used widely as a material for circuit breaker nozzle. Adding some filler into PTFE material is expected to be efficient for improving the endurance against arc radiation. In this experiment, effects of fillers on electrical properties such as dielectric constant, dissipation factor, electrical resistivity, dielectric strength and corona resistance of PTFE composites were investigated.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 882
Author(s):  
Praewpakun Sintharm ◽  
Muenduen Phisalaphong

Green natural rubber (NR) composites reinforced with black rice husk ash (BRHA)/white rice husk ash (WRHA), using alginate as a thickening and dispersing agent and crosslinking by CaCl2, was developed to improve mechanical, chemical and dielectric properties of NR-based films by using a latex aqueous microdispersion process. A maximum of 100 per hundred rubbers (phr) of rice husk ashes (RHAs) could be integrated in NR matrix without phase separation. Mechanical properties of the composite films were considerably enhanced, compared to the neat NR film. The composite films reinforced with WRHA demonstrated relatively better mechanical properties than those reinforced with BRHA, whereas the composites filled with BRHA demonstrated higher elongation at break. The crosslinking by CaCl2 improved the film tensile strength but lowered the film elasticity. The reinforcement strongly improved chemical resistance of the composite films in toluene. The films are biodegradable in soil, with weight loss of 7.6–18.3% of the initial dry weight after 3 months. Dielectric constant and dielectric loss factors of the composite films were enhanced with RHAs loading. According to the obtained properties, the composites offer potential for further development as stretchable conductive substrate or semiconducting polymer films for electronic applications.


Sign in / Sign up

Export Citation Format

Share Document