Experimental reexamination of transverse tensile strength for IM7/8552 tape-laminate composites

2020 ◽  
Vol 54 (23) ◽  
pp. 3297-3312
Author(s):  
Caitlin M Arndt ◽  
Nelson V de Carvalho ◽  
Michael W Czabaj

Due to the observed dependence of transverse-tensile strength, Y T, on test geometry and specimen size, there is no consensus regarding a test method that can uniquely measure Y T. This study reexamines the characterization of Y T by comparing results from established flexure tests with results from a new tensile test that exhibits consistent failure in the gage region. Additionally, the effects of surface preparation and direction of transverse fracture are investigated. Results show that Y T is inversely proportional to specimen volume and surface roughness and is insensitive to direction of transverse fracture. The relationship between specimen volume and Y T is adequately captured by Weibull strength-scaling theory, except at the tails of the Y T distributions. However, specimens exhibited microcracking prior to failure, which violates the “weak-link” assumption of the Weibull theory. These findings highlight the challenges of using deterministic Y T values in progressive damage analysis.

1996 ◽  
Vol 5 (4) ◽  
pp. 096369359600500
Author(s):  
J Ziao ◽  
J Tao

In this paper, we directed our attention to the interlaminar defects and their influence on the interlaminar strengths. With the aid of a S-570 scanning electron microscope, the morphology and distribution of interlaminar defects were inspected and documented. According to their shape, size and cause of formation, the defects were classified into five types: flakiness void, irregular shaped debond, local imperfectly cured resin, debond in two multi-directional plies, and inhomogeneous fibers and the large scale debond by these fibers. The cause of defects formation was discussed by analyzing the manufacturing process of composites. The influence of defects on the interlaminar strength and its mechanism was analyzed experimentally and theoretically. The results indicate that these defects, with different effects, decrease the interlaminar strength because they form interlaminar cracks, and the interlaminar shear strength is less affected than interlaminar tensile strength, which is measured according to GB4944 test method. To comprehend defects distribution effect, a four-point-bending test method was introduced to measure the interlaminar peel strength, and a discussion was made on the correlation between the interlaminar tensile strength, interlaminar peel strength and in-plane transverse tensile strength. Finally the concept of interlaminar defect coefficient, which can be used to characterize the defects, was set up and the formula to calculate it was proposed.


2019 ◽  
Vol 817 ◽  
pp. 365-370 ◽  
Author(s):  
Alessandro Bellini ◽  
Marco Bovo ◽  
Andrea Incerti ◽  
Claudio Mazzotti

Structural retrofitting with composite materials proved to be an effective technique for rehabilitation of degraded or damaged masonry and concrete buildings. Nowadays, Fiber Reinforced Cementitious Matrix (FRCM) composites are widely used as externally bonded strengthening systems thanks to their high performance, low weight and easiness of installation. Several experimental tests and numerical studies are currently available concerning the tensile and bond behavior of FRCM systems, but a debated and still open issue concerns the methods for the mechanical characterization of the mortar used as matrix within the strengthening system. The present paper analyses and compares different test methods for determining the matrix tensile strength. Pure tensile and flexural tests have been carried out on different mortar matrix samples. In order to evaluate which is the most suitable value to be considered for a correct interpretation and modeling of the composite system, the experimental results obtained through flexural tests on standard mortar specimens have been compared with the outcomes obtained from direct tensile tests on FRCM coupons. The present study represents only a first step for the definition of the most appropriate test method for the mechanical characterization of the matrix used within FRCM strengthening systems.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5405
Author(s):  
Matthias Jakob ◽  
Jakob Gaugeler ◽  
Wolfgang Gindl-Altmutter

Partial delignification and densification provide a pathway to significant improvement in the mechanical performance of wood. In order to elucidate potential effects of this treatment on the mechanical anisotropy of wood, partially delignified and densified spruce wood veneers were characterized at varying degrees of off-axis alignment. While the tensile strength and the modulus of elasticity (MOE) were clearly improved in parallel to the axis of wood fibers, this improvement quickly leveled off at misalignment angles ≥30°. For transverse tensile strength, the performance of alkaline-treated and densified wood was even inferior to that of untreated wood. Microscopic examination revealed the presence of microscopic cracks in treated wood, which are assumed to be responsible for this observation. It is concluded that impaired transverse tensile properties are a weakness of partially delignified and densified wood and should be considered when a potential usage in load-bearing applications is intended.


2016 ◽  
Vol 1 ◽  
pp. 54-59 ◽  
Author(s):  
Wilfried V. Liebig ◽  
Christian Leopold ◽  
Thomas Hobbiebrunken ◽  
Bodo Fiedler

Sign in / Sign up

Export Citation Format

Share Document