Immunochemical and Biochemical Studies of Human Enamel Proteins during Neonatal Development

1987 ◽  
Vol 66 (1) ◽  
pp. 50-56 ◽  
Author(s):  
M. Zeichner-David ◽  
M. Macdougall ◽  
J. Vides ◽  
M.L. Snead ◽  
H.C. Slavkin ◽  
...  

The present communication provides descriptions of the developmental, biochemical, and immunological properties of the human enamel extracellular matrix proteins. We report the isolation and partial characterization of the major human enamel proteins, the production of polyclonal antibodies directed against the human enamelins, and a comparison between the immunogenicity of enamelins and amelogenins from human and mouse enamel extracellular matrices. Our results indicate that although enamelins and amelogenins share some epitopes, each one of these proteins appears to invoke a different degree of immunogenicity.

1988 ◽  
Vol 251 (3) ◽  
pp. 631-641 ◽  
Author(s):  
M Zeichner-David ◽  
J Vides ◽  
M MacDougall ◽  
A Fincham ◽  
M L Snead ◽  
...  

Tooth enamel biomineralization is mediated by enamel proteins synthesized by ameloblast cells. Two classes of proteins have been described: enamelins and amelogenins. In lower vertebrates the absence of amelogenins is believed to give rise to aprismatic enamel; however, rabbit teeth, which apparently do not synthesize amelogenins, form prismatic enamel. The present study was designed to characterize the enamel proteins present in rabbit tooth organs and to gain an insight into the process of biomineralization. Rabbit enamel extracellular-matrix proteins were isolated and characterized during sequential stages of rabbit tooth organogenesis. The biosynthesis of enamel proteins was analysed by metabolic ‘pulse-chase’ experiments as well as mRNA-translation studies in cell-free systems. Our results indicated that rabbit enamel extracellular matrix contains ‘amelogenin-like’ proteins. However, these proteins are not synthesized as typical amelogenins, as in other mammalian species, thus suggesting that they are the processing products of higher-molecular-mass precursors. An N-terminal amino acid sequence of 29 residues, considered characteristic of mammalian amelogenins, was present in the rabbit ‘amelogenin-like’ proteins. By using anti-peptide antibodies to this region, similar epitopes were detected in all nascent enamel proteins, including enamelins. These studies suggest that the N-terminal sequence might be characteristic of all enamel proteins, not only amelogenins.


2021 ◽  
Author(s):  
Sophie S. Katz ◽  
Trevor J. Barker ◽  
Hannah M. Maul-Newby ◽  
Alessandro P. Sparacio ◽  
Ken C.Q. Nguyen ◽  
...  

Apical extracellular matrices can form protruding structures such as denticles, ridges, scales, or teeth on the surfaces of epithelia. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient actomyosin-dependent constriction of the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed mechanically to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


1985 ◽  
Vol 232 (2) ◽  
pp. 493-500 ◽  
Author(s):  
M MacDougall ◽  
M Zeichner-David ◽  
H C Slavkin

Experiments were designed to produce and characterize a polyclonal antibody directed against mouse dentine phosphoprotein, the major non-collagenous protein of the dentine extracellular matrix. Dental extracellular matrix proteins from 2-day-postnatal Swiss-Webster-mouse tooth organs were extracted with 0.5 M-acetic acid, followed by 4 M-guanidinium chloride/0.5 M-EDTA. Mouse dentine phosphoprotein yields were further increased by precipitation with 1 M-CaCl2. Final purification was achieved by excising and eluting dentine phosphoprotein polypeptide bands from preparative sodium dodecyl sulphate/urea/polyacrylamide gels. Mouse dentine phosphoprotein is a single component of approx. 72 kDa and has a characteristic amino acid composition of 33% aspartic acid and 55% serine/phosphoserine. A polyclonal antibody was raised in rabbits against purified mouse dentine phosphoprotein and was shown to be monospecific by enzyme-linked immunoabsorbent, dot-immunobinding and ‘Western transfer’ assays. This antibody was used to detect the expression and localization of dentine phosphoprotein in 1-day-postnatal mouse tooth organs. This antigen was localized intracellularly within the monolayer of odontoblasts, which line the perimeter of the dental papilla mesenchyme, and within the odontoblastic cell processes, which traverse the predentine matrix. Newly forming mineralized dentine matrix was also cross-reactive with the dentine phosphoprotein specific antibody. The non-mineralized predentine matrix did not contain any detectable cross-reactive antigens.


2011 ◽  
Vol 79 (9) ◽  
pp. 3744-3750 ◽  
Author(s):  
Mauricio J. Farfan ◽  
Lidia Cantero ◽  
Roberto Vidal ◽  
Douglas J. Botkin ◽  
Alfredo G. Torres

ABSTRACTAdherence to intestinal cells is a key process in infection caused by enterohemorrhagicEscherichia coli(EHEC). Several adhesion factors that mediate the binding of EHEC to intestinal cells have been described, but the receptors involved in their recognition are not fully characterized. Extracellular matrix (ECM) proteins might act as receptors involved in the recognition of enteric pathogens, including EHEC. In this study, we sought to characterize the binding of EHEC O157:H7 to ECM proteins commonly present in the intestine. We found that EHEC prototype strains as well as other clinical isolates adhered more abundantly to surfaces coated with fibronectin, laminin, and collagen IV. Further characterization of this phenotype, by using antiserum raised against the LpfA1 putative major fimbrial subunit and by addition of mannose, showed that a reduced binding of EHEC to ECM proteins was observed in a long polar fimbria (lpf) mutant. We also found that the two regulators, H-NS and Ler, had an effect in EHEC Lpf-mediated binding to ECM, supporting the roles of these tightly regulated fimbriae as adherence factors. Purified Lpf major subunit bound to all of the ECM proteins tested. Finally, increased bacterial adherence was observed when T84 cells, preincubated with ECM proteins, were infected with EHEC. Taken together, these findings suggest that the interaction of Lpf and ECM proteins contributes to the EHEC colonization of the gastrointestinal tract.


2011 ◽  
Vol 189 (1) ◽  
pp. 115-117 ◽  
Author(s):  
Alessandra Pelagalli ◽  
Maria Elena Pero ◽  
Vincenzo Mastellone ◽  
Anna Cestaro ◽  
Simona Signoriello ◽  
...  

2013 ◽  
Vol 37 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Daekee Kwon ◽  
Gwang-Sik Kang ◽  
Dong Keun Han ◽  
Kwideok Park ◽  
Jae-Hwan Kim ◽  
...  

1991 ◽  
Vol 36 (2) ◽  
pp. 89-94 ◽  
Author(s):  
P. Farge ◽  
S. Ricard-Blum ◽  
A. Joffre ◽  
G. Ville ◽  
H. Magloire
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document