Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women

2000 ◽  
Vol 48 (5) ◽  
pp. 623-629 ◽  
Author(s):  
Robert S. Staron ◽  
Fredrick C. Hagerman ◽  
Robert S. Hikida ◽  
Thomas F. Murray ◽  
David P. Hostler ◽  
...  

SUMMARY This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2 ± 2.2 yr) and 95 men (21.5 ± 2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S328
Author(s):  
M. T. Crill ◽  
R. S. Staron ◽  
F. C. Hagerman ◽  
R. S. Hikida ◽  
D. Hostler ◽  
...  

2009 ◽  
Vol 106 (3) ◽  
pp. 959-965 ◽  
Author(s):  
Barbara Norman ◽  
Mona Esbjörnsson ◽  
Håkan Rundqvist ◽  
Ted Österlund ◽  
Ferdinand von Walden ◽  
...  

α-Actinins are structural proteins of the Z-line. Human skeletal muscle expresses two α-actinin isoforms, α-actinin-2 and α-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of α-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that α-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of α-actinin-3, which implies that α-actinin-2 may compensate for the lack of α-actinin-3 and hence counteract the phenotypic consequences of the deficiency.


1996 ◽  
Vol 80 (5) ◽  
pp. 1547-1553 ◽  
Author(s):  
P. J. Adnet ◽  
H. Reyford ◽  
B. M. Tavernier ◽  
T. Etchrivi ◽  
I. Krivosic ◽  
...  

To determine whether a difference in fiber-type caffeine and Ca2+ sensitivities exists between human masseter and vastus lateralis skeletal muscle, we compared the fiber-type caffeine sensitivities in chemically skinned muscle fibers from 13 masseter and 18 vastus lateralis muscles. Caffeine sensitivity was defined as the threshold concentration inducing > 10% of the maximal tension obtained after the fiber was loaded with a 1.6 x 10(-2) mM Ca2+ solution for 30 s. Significant difference in the mean caffeine sensitivity was found between type I masseter fibers [2.57 +/- 1.32 (SD) mM] vs. type I (6.02 +/- 1.74 mM) and type II vastus lateralis fibers (11.25 +/- 3.13 mM). Maximal Ca(2+)-activated force per cross-sectional area was significantly different between masseter and vastus lateralis fibers. However, the Ca2+ concentration corresponding to half-maximal tension (pCa50) was not significantly different between type I masseter (pCa50 5.9 +/- 0.02) and type I vastus lateralis muscle (pCa50 6.01 +/- 0.08). These results suggest that the increase in caffeine sensitivity of masseter muscle reflects the presence of a low reactivity threshold of the sarcoplasmic reticulum.


1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1994 ◽  
Vol 77 (5) ◽  
pp. 2385-2390 ◽  
Author(s):  
C. A. Allemeier ◽  
A. C. Fry ◽  
P. Johnson ◽  
R. S. Hikida ◽  
F. C. Hagerman ◽  
...  

Eleven men sprint trained two to three times per week for 6 wk to investigate possible exercise-induced slow-to-fast fiber type conversions. Six individuals served as controls. Both groups were tested at the beginning and end of the study to determine anaerobic performance and maximal oxygen consumption. In addition, pre- and postbiopsies were extracted from the vastus lateralis muscle and were analyzed for fiber type composition, cross-sectional area, and myosin heavy chain (MHC) content. No significant changes were found in anaerobic or aerobic performance variables for either group. Although a trend was found for a decrease in the percentage of type IIb fibers, high-intensity sprint cycle training caused no significant changes in the fiber type distribution or cross-sectional area. However, the training protocol did result in a significant decrease in MHC IIb with a concomitant increase in MHC IIa for the training men. These data appear to support previous investigations that have suggested exercise-induced adaptations within the fast fiber population (IIb-->IIa) after various types of training (endurance and strength).


Author(s):  
Eric C. Leszczynski ◽  
Christopher Kuenze ◽  
Brett Brazier ◽  
Joseph Visker ◽  
David P. Ferguson

AbstractQuadriceps muscle weakness is a commonly reported issue post anterior cruciate ligament reconstruction (ACLR), with minimal information related to skeletal muscle morphology following surgery. The purpose is to examine the morphological and functional differences in the vastus lateralis muscle from patient's ACLR and contralateral leg. Three physically active ACLR participants were recruited and secured to a dynamometer to perform maximal voluntary isometric knee extension contractions (MVIC) of the ACLR and contralateral limb. Muscle biopsies of the ACLR and contralateral vastus lateralis were performed, then sectioned, and stained for myosin isoforms to determine fiber type. Confocal images were acquired, and ImageJ software was used to determine the fiber type and cross-sectional area (CSA). There was a significant reduction in CSA of the type IIa and type IIx muscle fiber cells between healthy (IIa: 7,718 ± 1,295 µm2; IIx; 5,800 ± 601 µm2) and ACLR legs (IIa: 4,139 ± 709 µm2; IIx: 3,708 ± 618 µm2) (p < 0.05), while there was no significant difference in knee extension MVIC torque between legs (healthy limb: 2.42 ± 0.52 Nm/kg; ACLR limb: 2.05 ± 0.24 Nm/kg, p = 0.11). The reduction in the cross-sectional area of the ACLR type II fibers could impair function and increase secondary injury risk.


1999 ◽  
Vol 90 (4) ◽  
pp. 1019-1025 ◽  
Author(s):  
Hugo Reyford ◽  
Pascal J. Adnet ◽  
Benoit Tavernier ◽  
Sebastien Beague ◽  
Joel Ferri ◽  
...  

Background An increase in masseter muscle tone in response to halothane or succinylcholine anesthesia (or both) can be observed in healthy persons. Thus the authors compared the fiber-type halothane and succinylcholine sensitivities in human masseter and vastus lateralis muscles. Methods Masseter and vastus lateralis muscle segments were obtained from 13 and 9 healthy persons, respectively. After chemical skinning of a single fiber and loading the sarcoplasmic reticulum with Ca++ 0.16 microM solution, halothane (0.5-4 vol% bubbled in the incubating solution), succinylcholine (0.1 microM to 10 mM), or both sensitivities were defined as the concentration inducing more than 10% of the maximum tension obtained by application of 16 microM Ca++ solution. The myofilament response to Ca++ was studied with and without halothane by observing the isometric tension of skinned masseter fibers challenged with increasing concentrations of Ca++. Muscle fiber type was determined by the difference in strontium-induced tension measurements. Results A significant difference in halothane sensitivity was found between type 1 masseter fibers (0.6+/-0.2 vol%; mean +/- SD) versus type 1 (2.7+/-0.6 vol%) and type 2 vastus lateralis muscle (2.5+/-0.4 vol%). Succinylcholine did not induce Ca++ release by the sarcoplasmic reticulum. In the masseter muscle, 0.75 vol% halothane decreased the maximal activated tension by 40% but did not change the Ca++ concentration that yields 50% of the maximal tension. Conclusions The very low halothane threshold for Ca++ release from the masseter muscle usually could be counteracted by a direct negative inotropic effect on contractile proteins. However, halothane may increase the sensitivity of the sarcoplasmic reticulum Ca++ release to succinylcholine-induced depolarization, leading to an increase in masseter muscle tone.


Sign in / Sign up

Export Citation Format

Share Document