scholarly journals Input Data Analysis Using Neural Networks

SIMULATION ◽  
2000 ◽  
Vol 74 (3) ◽  
pp. 128-137
Author(s):  
Anil Yilmaz ◽  
Ihsan Sabuncuoglu
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 705
Author(s):  
Josué Trejo-Alonso ◽  
Carlos Fuentes ◽  
Carlos Chávez ◽  
Antonio Quevedo ◽  
Alfonso Gutierrez-Lopez ◽  
...  

In the present work, we construct several artificial neural networks (varying the input data) to calculate the saturated hydraulic conductivity (KS) using a database with 900 measured samples obtained from the Irrigation District 023, in San Juan del Rio, Queretaro, Mexico. All of them were constructed using two hidden layers, a back-propagation algorithm for the learning process, and a logistic function as a nonlinear transfer function. In order to explore different arrays for neurons into hidden layers, we performed the bootstrap technique for each neural network and selected the one with the least Root Mean Square Error (RMSE) value. We also compared these results with pedotransfer functions and another neural networks from the literature. The results show that our artificial neural networks obtained from 0.0459 to 0.0413 in the RMSE measurement, and 0.9725 to 0.9780 for R2, which are in good agreement with other works. We also found that reducing the amount of the input data offered us better results.


2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2018 ◽  
Vol 19 (S18) ◽  
Author(s):  
Ahmed Sanaullah ◽  
Chen Yang ◽  
Yuri Alexeev ◽  
Kazutomo Yoshii ◽  
Martin C. Herbordt

Sign in / Sign up

Export Citation Format

Share Document