Modelling and adaptive dynamic sliding mode control of dielectrophoresis-based micromanipulation

2016 ◽  
Vol 40 (1) ◽  
pp. 122-134 ◽  
Author(s):  
Hua Luo ◽  
Weijie Sun ◽  
John TW Yeow

Automated, precise single particle manipulation in the microscale is in great demand and is one of the great challenges in biomedical and biochemical engineering. Automatic micromanipulation has also become a microrobotics challenge. Following this challenge, control technology is integrated with dielectrophoresis (DEP)-based micromanipulation technology in this paper to construct automatic DEP-based micromanipulation systems. DEP micromanipulation systems with electrodes of quadrupole polynomial geometry are developed as controllable microactuators. A semianalytical modelling method is proposed to formulate the analytical models of the DEP manipulation systems, which manifests that the DEP manipulation systems are non-affine non-linear systems. Then, taking the parameter uncertainties, unmodelled dynamics and external disturbances into account, an adaptive law combined with a dynamic sliding mode controller is designed for two-dimensional trajectory tracking control of a DEP micromanipulation system. The closed-loop system is proved stable in the presence of bounded lumped uncertainty based on the Lyapunov theorem. Finally, simulation results show the validity of the proposed control design.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruimin Zhang ◽  
Qiaoyu Chen ◽  
Haigang Guo

This paper presents an adaptive nonsingular terminal sliding mode control approach for the attitude control of a hypersonic vehicle with parameter uncertainties and external disturbances based on Chebyshev neural networks (CNNs). First, a new nonsingular terminal sliding surface is proposed for a general uncertain nonlinear system. Then, a nonsingular sliding mode control is designed to achieve finite-time tracking control. Furthermore, to relax the requirement for the upper bound of the lumped uncertainty including parameter uncertainties and external disturbances, a CNN is used to estimate the lumped uncertainty. The network weights are updated by the adaptive law derived from the Lyapunov theorem. Meanwhile, a low-pass filter-based modification is added into the adaptive law to achieve fast and low-frequency adaptation when using high-gain learning rates. Finally, the proposed approach is applied to the attitude control of the hypersonic vehicle and simulation results illustrate its effectiveness.


2011 ◽  
Vol 138-139 ◽  
pp. 523-528
Author(s):  
Guo Qin Gao ◽  
Hai Bin Zheng ◽  
Xue Mei Niu

This paper addresses the motion control of the parallel mechanism of virtual axis machine tool, which has a complex system model, the nonlinear and strong coupling characteristics and has strong external disturbances in high-speed machining. To further enhance its motion control performances, a novel adaptive dynamic sliding mode control method is proposed. The designed control system stability is proved theoretically. By building a new switching function, the second-order dynamic sliding mode control algorithm is designed to reduce the chattering of the conventional sliding mode control effectively and overcome the adverse effects of the fast changing dynamics of the actuators. By introducing the adaptive control, unknown external disturbances can be estimated online, which can improve the ability of resisting strong disturbances and the control precision of virtual axis machine tool. The simulation results for the virtual axis machine tool show that the designed control system has the good performances in tracking and resisting strong disturbances and can achieve the high precision motion control of the parallel mechanism of virtual axis machine tool.


2012 ◽  
Vol 220-223 ◽  
pp. 1148-1152 ◽  
Author(s):  
Li Dong Guo ◽  
Li Xin Yang ◽  
He Ming Jia

A dynamic sliding-mode control (DSMC) with backstepping is proposed for diving control of autonomous underwater vehicle (AUV), where surge force and stern plane are only available for vehicle's 3DOF diving motion. First, an equivalent model of AUV is developed. Then, the DSMC with an asymptotical sliding surface is proposed for the trajectory tracking control of AUV. Moreover, the analysis of stability can be completed by Lyapunov stability theory. Finally, To demonstrate the effectiveness of the proposed method, the simulation results are illustrated in this paper. simulation results show that, the tracking precision and the robustness of the system are improved under the proposed control method.


Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


Sign in / Sign up

Export Citation Format

Share Document