Event-triggered finite-time consensus control under uncertain disturbances with fully continuous communication and chattering free

2019 ◽  
Vol 42 (2) ◽  
pp. 228-243
Author(s):  
An Zhang ◽  
Pan Yang ◽  
Ding Zhou

This paper focuses on event-triggered finite-time consensus problem of second-order multi-agent system, which is subjected to external bounded disturbance. First, a novel finite-time consensus control algorithm based on the event-triggering control scheme is proposed. The proposed algorithm contains a saturation function that is disturbance rejection and aims at eliminating the chattering problem caused by the discontinuity of the control algorithm in some existing work. Further, the utilization of saturation function reduces damages to the actuators and decreases energy consumptions in practical applications. Second, an event-triggering function is developed to generate the control event sequences, which is fully continuous communication free and avoids continuous update of the controller by contrast with real-time control method and continuous communication event-triggered control scheme. Third, finite-time bounded consensus can be reached with the scale of the convergence region adjusted by appropriate parameter selecting. A rigorous proof based on Lyapunov stability analysis is given to verify that the event-triggered control algorithm, under the derived conditions, solves the second-order finite-time consensus with chattering free and being robust to external disturbances as well as excluding the Zeno behavior. Finally, two simulation examples are performed to validate the effectiveness of the results.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Haibo Xie ◽  
Zhengjiang Liu ◽  
Chengyong Yan ◽  
Shibo Zhou

This paper investigates the distributed finite-time event-triggered bipartite consensus control for multiagent systems over antagonistic networks. Under the constraint of energy conservation, a distributed nonlinear finite-time control protocol only depending upon local information is proposed coupled with event-triggered strategies, where controllers of agents at triggered instants are only updated to reduce the computation. It is proved that when the antagonistic network is structurally balanced with a spanning tree, a necessary and sufficient condition is established to guarantee all agents to reach consensus values with identical magnitude but opposite signs. More interestingly, the settling time depending on the initial state is obtained over the whole process. Comparing to asymptotic control algorithms, the proposed control method has better disturbance rejection properties and convergence rate. Simulations are given to demonstrate the effectiveness of the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lingling Fan ◽  
Chengyan Wu

This paper studies the consensus problem of a second-order multiagent system (MAS) with fixed communication delay under the structure of leaderless and leader-following systems. By using graph theory and finite-time control scheme, a distributed control protocol is proposed for each agent to reach consensus in a finite time. In practical application, the time delay of states is unavoidable, and for this, the consensus method is supposed to be extended to solve the time-delay problem. Thus, a finite-time consensus protocol with communication time delay is proposed in this paper. Compared with the general consensus method, the reliability and convergence speed of the system are increased by using the finite-time control. In addition, the protocol is distributed, and all agents have only local interactions. Finally, the effectiveness of the proposed protocol is verified by two numerical simulations.


Author(s):  
Zichao Yang ◽  
Shiqi Zheng ◽  
Bingyun Liang ◽  
Yuanlong Xie

This paper studies a consensus problem for a kind of stochastic multi-agent systems (SMAS). First, a reduced-order observer is designed to estimate unknown states in SMASs. Second, an event-triggered adaptive output feedback control method is presented. It can reduce the controller updates and communication burden. Moreover, the radial basis function neural networks are applied to approximate the unknown functions in systems. Finally, it is demonstrated that the proposed control scheme can achieve finite-time practical consensus for SMASs. Simulation results are provided to illustrate the effectiveness of the theoretical analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6299
Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He

The distributed attitude synchronization control problem for spacecraft formation flying subject to limited energy and computational resources is addressed based on event-triggered mechanism. Firstly, a distributed event-driven controller is designed to achieve attitude coordination with the limitation of energy and computing resources. Under the proposed control strategy, the controller is only updated at the event triggering instants, which effectively reduces the update frequency. Subsequently, an event-triggered strategy is developed to further decrease energy consumption and the amount of computation. The proposed event-triggered function only requires the latest state information about its neighbors, implying that the trigger threshold does not need to be calculated continuously. It is shown that the triggering interval between two successive events is strictly positive, showing that the control system has no Zeno phenomenon. Moreover, the update frequency of the proposed controller can be reduced by more than 90% compared to the update frequency of the corresponding time-driven controller with an update frequency of 10 Hz by choosing appropriate control parameters and the control system can still achieve high-precision convergence. Finally, the effectiveness of the constructed control scheme is verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document