Robust model reference control for uncertain second-order system subject to parameter uncertainties

Author(s):  
Guang-Tai Tian ◽  
Guang-Ren Duan

This paper is devoted to designing a robust model reference controller for uncertain second-order systems subject to parameter uncertainties. The system matrix of the first-order reference model is more general and the parameter uncertainties are assumed to be norm-bounded. The design of robust controller can be devided into two separate problems: problem robust stabilization and problem robust compensation. Based on the solution of generalized Sylvester matrix equations, we obtain some sufficient conditions to guarantee the complete parameterization of the controller. Then, the problem robust compensation of the closed-loop system is estimated by solving a convex optimisation problem with a set of linear matrix equations constraints. Two simulation examples are provided to illustrate the effectiveness of the proposed technique.

Author(s):  
Guang-Tai Tian ◽  
Guang-Ren Duan

This paper is devoted to designing the robust model reference controller for uncertain second-order descriptor linear systems subject to parameter uncertainties. The parameter uncertainties are assumed to be norm-bounded. The design of a robust controller can be divided into two separate problems: a robust stabilization problem and a robust compensation problem. Based on the solution of generalized Sylvester matrix equations, we obtain some sufficient conditions to guarantee the complete parameterization of the robust controller. The parametric forms are expressed by a group of parameter vectors which reveal the degrees of freedom existing in the design of the compensator and can be utilized to solve the robust compensation problem. In order to reduce the effect of parameter uncertainties on the tracking error vector, the robust compensation problem is converted into a convex optimization problem with a set of linear matrix equation constraints. A simulation example is provided to illustrate the effectiveness of the proposed technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Kefeng Li ◽  
Chao Zhang

This paper studies the solutions of second-order linear matrix equations on time scales. Firstly, the necessary and sufficient conditions for the existence of a solution of characteristic equation are introduced; then two diverse solutions of characteristic equation are applied to express general solution of the matrix equations on time scales.


Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


Author(s):  
Y Wang ◽  
P Hu

In this paper, the problem of global robust stability is discussed for uncertain Cohen-Grossberg-type (CG-type) bidirectional associative memory (BAM) neural networks (NNs) with delays. The parameter uncertainties are supposed to be norm bounded. The sufficient conditions for global robust stability are derived by employing a Lyapunov-Krasovskii functional. Based on these, the conditions ensuring global asymptotic stability without parameter uncertainties are established. All conditions are expressed in terms of linear matrix inequalities (LMIs). In addition, two examples are provided to illustrate the effectiveness of the results obtained.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Mingang Hua ◽  
Pei Cheng ◽  
Juntao Fei ◽  
Jianyong Zhang ◽  
Junfeng Chen

The network-based robustH∞filtering for the uncertain system with sensor failures and the noise is considered in this paper. The uncertain system under consideration is also subject to parameter uncertainties and delay varying in an interval. Sufficient conditions are derived for a linear filter such that the filtering error systems are robust globally asymptotically stable while the disturbance rejection attenuation is constrained to a given level by means of theH∞performance index. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is then given for the desired filter parameters. Two numerical examples are exploited to show the usefulness and effectiveness of the proposed filter design method.


2009 ◽  
Vol 16 (02) ◽  
pp. 293-308 ◽  
Author(s):  
Qingwen Wang ◽  
Guangjing Song ◽  
Xin Liu

We establish the formulas of the maximal and minimal ranks of the common solution of certain linear matrix equations A1X = C1, XB2 = C2, A3XB3 = C3 and A4XB4 = C4 over an arbitrary division ring. Corresponding results in some special cases are given. As an application, necessary and sufficient conditions for the invariance of the rank of the common solution mentioned above are presented. Some previously known results can be regarded as special cases of our results.


2012 ◽  
Vol 591-593 ◽  
pp. 1496-1501
Author(s):  
Yu Cai Ding ◽  
Hong Zhu ◽  
Yu Ping Zhang ◽  
Yong Zeng

In this paper, robust stability and stabilization of singular stochastic hybrid systems are investigated. The system under consideration involves parameter uncertainties, Itô-type stochastic disturbance, Markovian jump parameters as well as time-varying delays. The aim of this paper is to design a state controller such that the dynamic system is robust stable. By using the Lyapunov-Krasovskii functional and Itô's differential rule, delay-range-dependent sufficient conditions on robust stability and stabilization are obtained in the form of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed main results.


2005 ◽  
Author(s):  
M. Fardadi ◽  
A. Selk Ghafari ◽  
S. K. Hannani

Model Reference Adaptive Controller (MRAC) design, for Sharif University of Technology (SUT) Building Energy Management System (BEMS) is addressed in this paper. A reference model with fuzzy adaptive control rules was employed to design the controller for a system with time delay and model parameter uncertainties. Simulation study shows good performance of the closed loop system with optimum energy consumption for this system under external load disturbance.


Sign in / Sign up

Export Citation Format

Share Document