scholarly journals Risk assessment method of coal and gas outburst based on improved comprehensive weighting and cloud theory

2021 ◽  
pp. 014459872110558
Author(s):  
Chunhua Zhang ◽  
Dengming Jiao ◽  
Ziwen Dong ◽  
Hongyu Zhang

Risk assessment is an effective method of accident prevention and is vital to actual production. To reduce the risk of mining accidents and realize green and sustainable coal mining, a coal and gas outburst risk assessment method based on the improved comprehensive weight and cloud theory is proposed. The proposed method can effectively solve problems of fuzziness and randomness, index weight deviation, and correlation between indexes in risk assessment, as well as improve the accuracy and rationality of assessment. Nine influencing factors that correspond to coal seam occurrence and geological characteristics, coal seam physical characteristics, and gas occurrence characteristics are selected to establish the risk assessment index system of coal and gas outburst. Using the improved group G1 method and improved CRITIC method to obtain the subjective and objective weights, the ideal point method is used to obtain the comprehensive weight. Using the normal cloud model of cloud theory and the comprehensive weight to assess engineering examples 1–2, the No. 3 coal seam of a mine in Shanxi, and the 21 coal seam of a mine in Henan, the risk grade of coal and gas outburst is determined and then compared with the assessment results obtained from the engineering examples and the actual situations of the above mentioned coal seams. The results show that the coal and gas outburst risks of engineering examples 1–2, No. 3 coal seam, and 21 coal seam are of grades IV, IV, II, and IV, respectively. The No. 3 coal seam and 21 coal seam belong to lower and higher risk categories, respectively. The assessment results are consistent with the actual situation of the coal seams, thereby confirming the rationality and accuracy of the proposed method. This study expands the methods of coal and gas outburst risk assessment and facilitates the formulation of effective preventive measures.

2012 ◽  
Vol 164 ◽  
pp. 501-505
Author(s):  
Zhi Gen Zhao ◽  
Jia Chen ◽  
Jia Ping Yan

The coal and gas outburst is serious at Qingshan Coal Mine of Jiangxi Province, so it is of significance to research the features of Jianshanchong klippe and its control to gas geology. The research reveals that: Jianshanchong klippe is distributed from the east boundary of Qingshan Coal Mine to No. 45 Exploration Line, its transverse profile is like a funnel while its longitudinal profile is like a wedge, northwest side of the klippe is thicker and deeper while southeast side is thinner and more shallow. Because of the cover and insert of Jianshanchong klippe, the structure of coal-bearing strata is more complex, some secondary folds are formed, and also, the coal seam is changed greatly, the tectonic coal is well developed and the coal seam is suddenly thickening or thinning. Due to the effect of Jianshanchong klippe, the coal and gas outbursts occur in the area of secondary folds, thicker coal seams or tectonic coals. Concerning the prediction of gas geology in deep area, in view of the facts including simpler structure, stable coal seam and decreased thickness, the gas emission rate and the coal and gas outburst will decrease in Fifth and Sixth Mining Level than that in Second and Third Mining Level


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Wang ◽  
Yanzhao Wei ◽  
Minggong Guo ◽  
Yanzhi Li

The current study aims to analyze the principles of integrated technology of explosion to tackle the problems of coal seam high gas content and pressure, developed faults, complex structure, low coal seam permeability, and high outburst risk. Based on this, we found through numerical simulation that as the inclination of the coal seam increases, the risk of coal and gas outburst increases during the tunneling process. Therefore, it is necessary to take measures to reduce the risk of coal and gas outburst. We conducted field engineering experiments. Our results show that the synergistic antireflection technology of hydraulic fracturing and deep-hole presplitting blasting has a significant antireflection effect in low-permeability coal seams. After implementing this technology, the distribution of coal moisture content was relatively uniform and improved the influence range of direction and tendency. Following 52 days of extraction, the average extraction concentration was 2.9 times that of the coal seam gas extraction concentration under the original technology. The average scalar volume of single hole gas extraction was increased by 7.7 times. Through field tests, the purpose of pressure relief and permeability enhancement in low-permeability coal seams was achieved. Moreover, the effect of gas drainage and treatment in low-permeability coal seams was improved, and the applicability, effectiveness, and safety of underground hydraulic fracturing and antireflection technology in low-permeability coal seams were verified. The new technique is promising for preventing and controlling gas hazards in the future.


2020 ◽  
Vol 34 (5) ◽  
pp. 627-640 ◽  
Author(s):  
Shi Xianwu ◽  
Qiu Jufei ◽  
Chen Bingrui ◽  
Zhang Xiaojie ◽  
Guo Haoshuang ◽  
...  

Author(s):  
Zuzhen Ji ◽  
Dirk Pons ◽  
John Pearse

Successful implementation of Health and Safety (H&S) systems requires an effective mechanism to assess risk. Existing methods focus primarily on measuring the safety aspect; the risk of an accident is determined based on the product of severity of consequence and likelihood of the incident arising. The health component, i.e., chronic harm, is more difficult to assess. Partially, this is due to both consequences and the likelihood of health issues, which may be indeterminate. There is a need to develop a quantitative risk measurement for H&S risk management and with better representation for chronic health issues. The present paper has approached this from a different direction, by adopting a public health perspective of quality of life. We have then changed the risk assessment process to accommodate this. This was then applied to a case study. The case study showed that merely including the chronic harm scales appeared to be sufficient to elicit a more detailed consideration of hazards for chronic harm. This suggests that people are not insensitive to chronic harm hazards, but benefit from having a framework in which to communicate them. A method has been devised to harmonize safety and harm risk assessments. The result was a comprehensive risk assessment method with consideration of safety accidents and chronic health issues. This has the potential to benefit industry by making chronic harm more visible and hence more preventable.


2021 ◽  
Vol 420 ◽  
pp. 129893
Author(s):  
Zijian Liu ◽  
Wende Tian ◽  
Zhe Cui ◽  
Honglong Wei ◽  
Chuankun Li

2021 ◽  
Vol 102 ◽  
pp. 102134
Author(s):  
Junjiang He ◽  
Tao Li ◽  
Beibei Li ◽  
Xiaolong Lan ◽  
Zhiyong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document