scholarly journals Coupling Technology of Deep-Hole Presplitting Blasting and Hydraulic Fracturing Enhance Permeability Technology in Low-Permeability and Gas Outburst Coal Seam: A Case Study in the No. 8 Mine of Pingdingshan, China

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Wang ◽  
Yanzhao Wei ◽  
Minggong Guo ◽  
Yanzhi Li

The current study aims to analyze the principles of integrated technology of explosion to tackle the problems of coal seam high gas content and pressure, developed faults, complex structure, low coal seam permeability, and high outburst risk. Based on this, we found through numerical simulation that as the inclination of the coal seam increases, the risk of coal and gas outburst increases during the tunneling process. Therefore, it is necessary to take measures to reduce the risk of coal and gas outburst. We conducted field engineering experiments. Our results show that the synergistic antireflection technology of hydraulic fracturing and deep-hole presplitting blasting has a significant antireflection effect in low-permeability coal seams. After implementing this technology, the distribution of coal moisture content was relatively uniform and improved the influence range of direction and tendency. Following 52 days of extraction, the average extraction concentration was 2.9 times that of the coal seam gas extraction concentration under the original technology. The average scalar volume of single hole gas extraction was increased by 7.7 times. Through field tests, the purpose of pressure relief and permeability enhancement in low-permeability coal seams was achieved. Moreover, the effect of gas drainage and treatment in low-permeability coal seams was improved, and the applicability, effectiveness, and safety of underground hydraulic fracturing and antireflection technology in low-permeability coal seams were verified. The new technique is promising for preventing and controlling gas hazards in the future.

2012 ◽  
Vol 524-527 ◽  
pp. 752-757 ◽  
Author(s):  
Li Wei Chen ◽  
Jin Chao Chen

In order to improve the heading speed of the seam gateway and mitigate the problem of mining maladjustment in high-gas mines and coal and gas outburst mines which are almost low permeability, highly-gas content and it is difficult to eliminate the gas-outburst dangerous by the conventional pre-drainage technologies in a short period. The paper puts forward the view of strip gas pre-drainage with boreholes along coal seam from front traverse of the rock roadway over the seam roof, which can greatly save the time of gas pre-drainage to eliminate gas outburst dangerous by drilling and gas pre-drainage simultaneously for the trips between two traverses. The test results showed that the ratio of roadway driving to gas pre-drainage were increased from 0.31 to 3.6,the speed of driving increased from 50m to 105m per month and the time of roadway drilling and blasting heading per hundred meters from78 days reduced to 19 days. So this technology can greatly mitigate the replacement contradiction of mining and roadway driving.


2019 ◽  
Vol 9 (21) ◽  
pp. 4720 ◽  
Author(s):  
Ge ◽  
Zhang ◽  
Sun ◽  
Hu

Although numerous studies have tried to explain the mechanism of directional hydraulic fracturing in a coal seam, few of them have been conducted on gas migration stimulated by directional hydraulic fracturing during coal mine methane extraction. In this study, a fully coupled multi-scale model to stimulate gas extraction from a coal seam stimulated by directional hydraulic fracturing was developed and calculated by a finite element approach. The model considers gas flow and heat transfer within the hydraulic fractures, the coal matrix, and cleat system, and it accounts for coal deformation. The model was verified using gas amount data from the NO.8 coal seam at Fengchun mine, Chongqing, Southwest China. Model simulation results show that slots and hydraulic fracture can expand the area of gas pressure drop and decrease the time needed to complete the extraction. The evolution of hydraulic fracture apertures and permeability in coal seams is greatly influenced by the effective stress and coal matrix deformation. A series of sensitivity analyses were performed to investigate the impacts of key factors on gas extraction time of completion. The study shows that hydraulic fracture aperture and the cleat permeability of coal seams play crucial roles in gas extraction from a coal seam stimulated by directional hydraulic fracturing. In addition, the reasonable arrangement of directional boreholes could improve the gas extraction efficiency. A large coal seam dip angle and high temperature help to enhance coal mine methane extraction from the coal seam.


2021 ◽  
pp. 014459872110558
Author(s):  
Chunhua Zhang ◽  
Dengming Jiao ◽  
Ziwen Dong ◽  
Hongyu Zhang

Risk assessment is an effective method of accident prevention and is vital to actual production. To reduce the risk of mining accidents and realize green and sustainable coal mining, a coal and gas outburst risk assessment method based on the improved comprehensive weight and cloud theory is proposed. The proposed method can effectively solve problems of fuzziness and randomness, index weight deviation, and correlation between indexes in risk assessment, as well as improve the accuracy and rationality of assessment. Nine influencing factors that correspond to coal seam occurrence and geological characteristics, coal seam physical characteristics, and gas occurrence characteristics are selected to establish the risk assessment index system of coal and gas outburst. Using the improved group G1 method and improved CRITIC method to obtain the subjective and objective weights, the ideal point method is used to obtain the comprehensive weight. Using the normal cloud model of cloud theory and the comprehensive weight to assess engineering examples 1–2, the No. 3 coal seam of a mine in Shanxi, and the 21 coal seam of a mine in Henan, the risk grade of coal and gas outburst is determined and then compared with the assessment results obtained from the engineering examples and the actual situations of the above mentioned coal seams. The results show that the coal and gas outburst risks of engineering examples 1–2, No. 3 coal seam, and 21 coal seam are of grades IV, IV, II, and IV, respectively. The No. 3 coal seam and 21 coal seam belong to lower and higher risk categories, respectively. The assessment results are consistent with the actual situation of the coal seams, thereby confirming the rationality and accuracy of the proposed method. This study expands the methods of coal and gas outburst risk assessment and facilitates the formulation of effective preventive measures.


2012 ◽  
Vol 164 ◽  
pp. 501-505
Author(s):  
Zhi Gen Zhao ◽  
Jia Chen ◽  
Jia Ping Yan

The coal and gas outburst is serious at Qingshan Coal Mine of Jiangxi Province, so it is of significance to research the features of Jianshanchong klippe and its control to gas geology. The research reveals that: Jianshanchong klippe is distributed from the east boundary of Qingshan Coal Mine to No. 45 Exploration Line, its transverse profile is like a funnel while its longitudinal profile is like a wedge, northwest side of the klippe is thicker and deeper while southeast side is thinner and more shallow. Because of the cover and insert of Jianshanchong klippe, the structure of coal-bearing strata is more complex, some secondary folds are formed, and also, the coal seam is changed greatly, the tectonic coal is well developed and the coal seam is suddenly thickening or thinning. Due to the effect of Jianshanchong klippe, the coal and gas outbursts occur in the area of secondary folds, thicker coal seams or tectonic coals. Concerning the prediction of gas geology in deep area, in view of the facts including simpler structure, stable coal seam and decreased thickness, the gas emission rate and the coal and gas outburst will decrease in Fifth and Sixth Mining Level than that in Second and Third Mining Level


2013 ◽  
Vol 690-693 ◽  
pp. 3059-3067 ◽  
Author(s):  
Guo Wei Dong

Protective layer mining is the main regional measures for control coal and gas outburst . According to the defects of the preventing coal and gas outburst technology of middle distance and low permeability and upper protective layer in western Shuicheng mining area, the coal seams coal and gas outburst original danger are analyzed and protective layer is choosed initially using gas geological theory,the choice upper protective layer feasibility is analyzed using protection layer theory. the preventing coal and gas outburst technology of middle distance and low permeability and upper protective layer control effect is studied by numerical simulation and spot investigation. The conclusions from this research:the preventing coal and gas outburst technology of middle distance and low permeability and upper protective layer can decrease coal and gas outburst prediction index and control coal and gas outburst; the coal seams coal and gas outburst original danger can be preliminarily evaluated and the evaluation result can provide the basis for protective layer choice; the preventing coal and gas outburst technology of middle distance and low permeability and upper protective layer can be applied in western marine-continental transitional facies coal measure strata.


2020 ◽  
Author(s):  
Bangyou Jiang ◽  
Shitan Gu ◽  
Yunliang Tan ◽  
Guangchao Zhang ◽  
Jihua Zhang

Abstract Slicing fully mechanized caving mining now is a common high-efficiency mining method for ultra-thick coal seams. However, effective gas control has remained a difficulty in fully mechanized top-coal caving mining of low permeability ultra-thick coal seams. This study focused on mining of the #9-15 coal in Liuhuanggou Coal Mine, Xinjiang Province, China, and combined theoretical analyses and field test results for exploring comprehensive gas control methods for fully mechanized caving of low permeability ultra-thick coal seams. The No. (9-15)06 panel is a top slicing panel of the #9-15 coal with a mining height of 9 m, and the No. (4-5)02 goaf is located on the top of the panel. Through analysis, gas emissions in the No. (9-15)06 panel were mainly sourced from the coal wall, caving of top coal, goaf, and neighboring coal seams. A comprehensive gas control method based on source separation was proposed, which combined gas pre-drainage along the coal seam, high-position drilling on the top, pre-burial of pipes in the goaf, and pressure-balancing ventilation. Considering the poor gas pre-drainage effect for low permeability coal seams, the permeability of the coal seam was enhanced using hydraulic fracturing. According to coal seam and crustal stress distribution characteristics, the arrangement of the boreholes and backward segmented fracturing technology were designed. Field data show that coal underwent remarkable pre-fracturing under hydraulic fracturing. Mean gas pre-drainage from the boreholes was enhanced by nearly 4 times compared to the pre-hydraulic fracturing state. Finally, using the proposed comprehensive control method based on the gas sources, field tests were performed in the No. (9-15)06 panel. Field measurement data demonstrate that gas concentration in the return airflow fluctuated within a range of 0.05%~0.35%, i.e., gas concentration did not exceed the standard. The proposed gas control method can provide insightful reference for the other similar projects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bangyou Jiang ◽  
Shitan Gu ◽  
Wenshuai Li ◽  
Guangchao Zhang ◽  
Jihua Zhang

Slicing fully mechanized caving mining is a standard high-efficiency mining method for ultrathick coal seams. However, the effectiveness of gas control has accentuated the difficulty in fully mechanized top coal caving of low-permeability ultrathick coal seams. This study focused on mining the No. 9-15 coal in Liuhuanggou Coal Mine, Xinjiang Province, China. To this aim, the results of theoretical analyses and field tests were combined to explore a comprehensive gas control method for fully mechanized caving of low-permeability ultrathick coal seams. The No. (9-15)06 panel was a top-slicing panel of the No. 9-15 coal with a mining height of 9 m. Gas analysis results revealed that gas emissions in the No. (9-15)06 panel are mainly sourced from the coal wall, caving top coal, goaf, and neighboring coal seams. Based on gas source separation, a comprehensive gas control method was proposed. The proposed method was based on the combination of gas predrainage alongside the coal seam, high-position drilling on the top, preburial of pipes in the goaf, and pressure-balancing ventilation. The permeability and gas predrainage were enhanced by hydraulic fracturing in low-permeability coal seams. According to the characterizations of coal seam and crustal stress distribution, the arrangement of the boreholes and backward-segmented fracturing technology were designed. From the field results, the coal seam presented a remarkable prefracturing under hydraulic fracturing. Besides, the mean gas predrainage from the boreholes was enhanced by four times compared to the prehydraulic fracturing state. Finally, using the proposed comprehensive control method based on the gas sources, field tests were performed in the No. (9-15)06 panel. The measured results demonstrated that gas concentration in the return airflow is fluctuated within a range of 0.05% to 0.35%. The proposed gas control method can provide an insightful reference for other similar projects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhaoying Chen ◽  
Xuehai Fu ◽  
Guofu Li ◽  
Jian Shen ◽  
Qingling Tian ◽  
...  

To enhance the coalbed methane (CBM) extraction in broken-soft coal seams, a method of drilling a horizontal well along the roof to hydraulically fracture the coal seam is studied (i.e., HWR-HFC method). We first tested the physical and mechanical properties of the broken-soft and low-permeability (BSLP) coal resourced from Zhaozhuang coalmine. Afterward, the in situ hydraulic fracturing test was conducted in the No. 3 coal seam of Zhaozhuang coalmine. The results show that (1) the top part of the coal seam is fractured coal, and the bottom is fragmented-mylonitic coal with a firmness coefficient value of less than 1.0. (2) In the hydraulic fracturing test of the layered rock-coal specimens in laboratory, the through-type vertical fractures are usually formed if the applied vertical stress is the maximum principal stress and is greater than 4 MPa compared with the maximum horizontal stress. However, horizontal fractures always developed when horizontal stress is the maximum or it is less than 4 MPa compared with vertical stress. (3) The in situ HWR-HFC hydraulic fracturing tests show that the detected maximum daily gas production is 11,000 m3, and the average gas production is about 7000 m3 per day. This implies that the CBM extraction using this method is increased by 50%~100% compared with traditional hydraulic fracturing in BSLP coal seams. The research result could give an indication of CBM developing in the broken-soft and low-permeability coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dan Zhao ◽  
Mingyu Wang ◽  
Xinhao Gao

To reduce gas disasters in low permeability and high-gas coal seams and improve gas predrainage efficiency, conventional deep-hole presplitting blasting permeability increasing technology was refined and perfected. The numerical calculation model of presplitting blasting was established by using ANSYS/LS-DYNA numerical simulation software. The damage degree of coal and rock blasting was quantitatively evaluated by using the value range of the damage variable D. According to the actual field test parameters of coal seam #3 in the Sanyuan coal mine, Dlim = 0.81–1.0 was the coal rock crushing area, Dlim = 0.19–0.81 was the coal rock crack area, and Dlim = 0–0.19 was the coal rock disturbance area. By comparing and analysing the damage distribution nephogram of coal and rock mass under the influence of different millisecond blasting time interval and the blasting effect of simulation model, the optimal layout parameters of multilayer through cracks were obtained theoretically. And, the determined parameters were tested on the working face of the 1312 transportation roadway in coal seam #3 of the Sanyuan coal mine. The permeability effect was compared and analysed through the analysis of the gas concentration, gas purity, and mixing volume before and after the implementation of deep-hole presplitting blasting antireflection technology, as well as the change of gas pressure, attenuation coefficient, permeability coefficient, and other parameters between blasting coal seams. The positive role of millisecond blasting in reducing pressure and increasing permeability in low permeability and high-gas coal seam were determined.


Sign in / Sign up

Export Citation Format

Share Document