The in Vivo and in Vitro Effect of Phenylephrine (Neo Synephrine) on Nasal Ciliary Beat Frequency and Mucociliary Transport

1990 ◽  
Vol 103 (4) ◽  
pp. 558-565 ◽  
Author(s):  
P. Perry Phillips ◽  
Thomas V. McCaffrey ◽  
Eugene B. Kern
1998 ◽  
Vol 12 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Mark Jorissen

Mucociliary transport is one of the most important defense mechanisms of the airway. Mucociliary transport time or rate, as measured using the saccharin test or the radioisotope technique, respectively, is clinically the most relevant parameter, although subject to large intra- and interindividual variability. There is no correlation between mucociliary transport in vivo and ciliary beat frequency ex vivo. Preliminary evidence demonstrates that mucociliary transport correlates with ciliary structure and orientation as investigated with transmission and scanning electron microscopy. A correlation is presented between ciliary beat frequency and secondary ciliary abnormalities. This correlation can best be described according to the logistic sigmoid model (r = 0.69). Based on these functional data, an ultrastructural distinction is proposed among normal (less than 5%), light (5 to 15%), moderate (15 to 25%), and severe (more than 25%) secondary ciliary dyskinesia.


1988 ◽  
Vol 65 (2) ◽  
pp. 971-981 ◽  
Author(s):  
L. B. Wong ◽  
I. F. Miller ◽  
D. B. Yeates

beta 2-Adrenergic bronchodilator and muscarinic cholinergic bronchoconstrictor agonists both stimulate ciliary activity in vitro. To test the hypothesis that increases in autonomic activity would result in increases in ciliary beat frequency (CBF) in vivo, a correlation analysis heterodyne laser light-scattering system was developed and validated to measure the stimulating effects of sympathomimetic and parasympathomimetic agonists on tracheal CBF in intact, anesthetized beagles. The mean baseline CBF from 42 studies of 274 measurements in 9 (5 male and 4 female) adult beagles was 6.6 +/- 1.1 Hz. The stimulating effects of a beta 2-adrenergic agonist, fenoterol, and a muscarinic cholinergic agonist, methacholine, on CBF were studied on four and eight beagles, respectively. The studies were randomized and blinded. Aerosolized 10(-5) M fenoterol stimulated the CBF from the base line of 6.8 +/- 2.5 to 32.0 +/- 17.9 Hz in four dogs. Aerosolized methacholine stimulated the CBF from the base line of 5.8 +/- 0.7 to 9.4 +/- 3.0 Hz for 10(-8) M, and to 12.6 +/- 3.1 Hz for 10(-6) M in eight dogs. These are the first data obtained in intact animals that demonstrate CBF in the lower respiratory tract is regulated by autonomic agonists.


1998 ◽  
Vol 119 (3) ◽  
pp. 278-287 ◽  
Author(s):  
Eugene N. Myers ◽  
Thomas Runer ◽  
Anders Cervin ◽  
Sven Lindberg ◽  
Rolf Uddman

The in vitro effects of the nitric oxide (NO) substrate L-arginine on ciliary beat frequency and the in vivo effects of the NO donor sodium nitroprusside (SNP) on mucociliary activity were investigated in the rabbit maxillary sinus mucosa with photoelectric techniques. L-Arginine increased ciliary beat frequency in vitro with a maximum response of 27.1% ± 6.4% at 10-3mol/L, and this effect was reversibly blocked by pretreatment with the NO synthase (NOS) inhibitor NG-nitro-L-arginine, whereas D-arginine had no such effect. SNP increased mucociliary activity in vivo, the peak response of 36.8% ± 4.2% being obtained at the dose of 30.0 μg/kg. No tachyphylaxis was observed after repeat challenge with SNP. The increase in mucociliary activity caused by SNP was largely unaffected by pretreatment with the calcium channel blocker nifedipine, the cyclooxygenase inhibitor diclofenac, and the cholinergic antagonist atropine. The nonselective β-blocker propranolol delayed the peak response of SNP to 7 to 8 minutes after challenge, compared with 1 to 2 minutes after challenge in animals without pretreatment. The results show the NO substrate L-arginine and the NO donor SNP to have ciliostimulatory effects in vitro and in vivo, respectively. The occurrence of NOS production in the sphenopalatine ganglion and sinus mucosa of the rabbit was studied by immunohistochemistry for NOS activity or nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry. The latter is an indirect sign of neuronal NOS activity. Numerous NOS-containing cell bodies were seen in the sphenopalatine ganglion; in the sinus mucosa a moderate supply of thin NOS-immunoreactive nerve fibers was seen. Taken together, the morphologic findings and the functional results indicate NO to be a regulator of mucociliary activity in upper airways.


2006 ◽  
Author(s):  
J. Rička ◽  
N. Bogdanović ◽  
B. Krattiger ◽  
D. Holzmann ◽  
M. Frenz

1995 ◽  
Vol 104 (10) ◽  
pp. 798-802 ◽  
Author(s):  
Paul J. Schuil ◽  
Maartje Ten Berge ◽  
Kees Graamans ◽  
José M. E. Van Gelder ◽  
Egbert H. Huizing

On stimulation of trigeminal nerve endings, neuropeptides are released into the nasal mucosa. Among these neuropeptides is substance P (SP). In this study, we determined the effect in vitro of SP, as well as SP together with thiorphan, a blocker of the SP-degrading enzyme neutral endopeptidase, on the ciliary beat frequency (CBF) of the human upper respiratory tract. Ciliated epithelium of human adenoid tissue was used in the experiments. The CBF was measured by means of a computer-assisted photoelectric method. Substance P (10−8 to 10−5 mol/L, n = 7) showed a small but statistically significant dose-dependent decrease in CBF. On perfusion with SP (10−8 to 10−5 mol/L, n = 8) in combination with thiorphan, no statistically significant effect was found. We conclude that SP does not have a direct effect on ciliary activity to such an extent that it will affect mucociliary transport in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


2005 ◽  
Vol 19 (4) ◽  
pp. 353-357 ◽  
Author(s):  
Mônica Aidar Menon-Miyake ◽  
Regiani Carvalho de Oliveira ◽  
Geraldo Lorenzi-Filho ◽  
Paulo Hilário Nascimento Saldiva ◽  
Ossamu Butugan

Background Luffa operculata is a medicinal plant used in homeopathic and alternative medicine. In the United States, it is sold in a purified spray form, whereas a homemade L. operculata dry fruit infusion (DFI) is commonly used in Latin America. The L. operculata DFI is applied intranasally, inducing profuse mucous secretion and relieving nasal symptoms. Nevertheless, this medication may cause irritation of the nasal mucosa, as well as epistaxis or anosmia. Given the growing popularity of alternative medicine, a decision was made to evaluate the effects of this substance on mucous membranes. Methods The effects of L. operculata DFI on mucociliary transport velocity, ciliary beat frequency, and transepithelial potential difference (PD) were evaluated in an isolated frog palate preparation. We tested 46 palates immediately before immersion and again at 5 and 20 minutes after immersion. Four groups (n = 10) were tested in frog Ringer: control; L. operculata DFI, 60 mg/L; 600 mg/L; and 1200 mg/L. An additional group was tested using L. operculata DFI prepared with water (600 mg/L of H2O, n = 6). Epithelial samples were harvested for ultrastructural study. Results In treated palates, mucociliary transport velocity and ciliary beat frequency decreased significantly (p < 0.001 and p < 0.008, respectively). There was a dose-dependent decrease in PD modulus (p < .007). Our PD findings indicated ion-fluid transport abnormalities, which were confirmed by transmission electron microscopy that showed enlargement of interepithelial spaces. Conclusion In this ex vivo model, the L. operculata DFI infusion promoted significant changes in the mucociliary function of the epithelium, suggesting that it is potentially noxious to human nasal mucosa.


2002 ◽  
Vol 112 (3) ◽  
pp. 570-573 ◽  
Author(s):  
Wilbert M. Boek ◽  
Kees Graamans ◽  
Hanny Natzijl ◽  
Peter P. van Rijk ◽  
Egbert H. Huizing

Sign in / Sign up

Export Citation Format

Share Document