Immunohistochemical Study of Intralaryngeal Ganglia in the Cat

1992 ◽  
Vol 106 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Kuniyoshi Tsuda ◽  
Takemoto Shin ◽  
Sadahiko Masuko

To study the mechanism of autonomic regulation in the larynx, intralaryngeal local ganglia of the cat were investigated using immunohistochemical techniques. Small intralaryngeal ganglia were found in the peripheral portions of internal branches of the superior laryngeal nerve. Ninety-one percent of the ganglionic neurons were immunoreactive (IR) to vasoactive intestinal polypeptide (VIP), and 10% of the VIP-IR cells were also immunoreactive to enkephalin (ENK) and/or substance P (SP). The immunoreactivity of neuronal cell bodies remained unchanged even after denervation of the bilateral superior and recurrent laryngeal nerves. A dense distribution of calcitonin gene-related peptide (CGRP)-IR nerve fibers was found around almost all neuronal cells in the intralaryngeal. ganglia. A few VIP-IR, ENK-IR, and SP-IR nerve fibers were also observed. Only the CGRP-IR fibers disappeared after the denervation experiments. in the laryngeal glands and mucosal arterioles, VIP-IR nerve terminals were found that were also immunoreactive to ENK and/or SP. However, these Immunoreactive nerve endings in the glands and arterioles remained after the denervation experiments. The results of our study indicate that laryngeal exocrine secretion and blood flow are regulated by postganglionic autonomic parasympathetic fibers from intralaryngeal ganglia that contain VIP alone or VIP with ENK and/or SP, and that these ganglionic neurons may be innervated by CGRP-IR extrinsic nerve fibers.

1997 ◽  
Vol 273 (5) ◽  
pp. H2192-H2199 ◽  
Author(s):  
J. G. Yu ◽  
T. Ishine ◽  
T. Kimura ◽  
W. E. O’Brien ◽  
T. J. F. Lee

The presence of nitric oxide synthase (NOS), argininosuccinate synthetase (ASS), and argininosuccinate lyase (ASL) and their coexistence with NADPH-diaphorase (NADPHd), a marker for NOS, in the porcine sphenopalatine ganglia (SPG), pial veins, and the anterior cerebral arteries was examined using immunohistochemical and histochemical staining techniques. NOS-immunoreactive (I), ASS-I, and ASL-I fibers were found in pial veins and the anterior cerebral arteries. NOS, ASS, and ASL immunoreactivities were also found in neuronal cell bodies in the SPG. Almost all neuronal cell bodies in the SPG and nerve fibers in pial veins and the anterior cerebral arteries that were reactive to ASS, ASL, and NOS were also stained positively with NADPHd, suggesting that ASS, ASL, and NOS were colocalized in the same neurons in the SPG and perivascular nerves. With the use of in vitro tissue bath techniques,l-citrulline but notd-citrulline reversed inhibition of neurogenic vasodilation in isolated porcine pial veins produced by NOS inhibitors such as N G-nitro-l-arginine methyl ester. In the presence of l-aspartate,l-arginine was synthesized froml-citrulline in homogenates of SPG and endothelium-denuded cerebral arteries and pial veins. These results provide evidence indicating that perivascular nerves in pial veins like cerebral arteries can convertl-citrulline tol-arginine for synthesizing nitric oxide. The conversion is most likely via an argininosuccinate pathway.


2011 ◽  
Vol 301 (5) ◽  
pp. E955-E966 ◽  
Author(s):  
Annabelle Reaux-Le Goazigo ◽  
Laurence Bodineau ◽  
Nadia De Mota ◽  
Lydie Jeandel ◽  
Nicolas Chartrel ◽  
...  

Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.


1997 ◽  
Vol 76 (7) ◽  
pp. 1350-1356 ◽  
Author(s):  
K. Luukko ◽  
K. Sainio ◽  
H. Sariola ◽  
M. Saarma ◽  
I. Thesleff

Earlier studies have shown that mammalian tooth formation can take place in the absence of peripheral nerve fibers. This has been taken to indicate that neurons are not needed for mammalian tooth development. However, our recent localization of peripherin, which is a neuronal cell marker, has suggested that neuronal cell bodies may be associated with developing teeth. In this study, we have analyzed in vivo and in vitro the presence of neuronal cells in developing rat tooth germs. When E14 and E16 rat first molars (thickening of presumptive dental epithelium and bud-stage tooth germ, respectively) were cultured in vitro, peripheral trigeminal axons degenerated. However, with antibodies against peripherin and L1 neural cell adhesion protein, we detected neuronal cell bodies and their axons in the explants. Next, the expression of neurofilament light-chain (NF-L) mRNAs was studied by in situ hybridization of embryonic E12 first branchial arches and tooth germs from initiation to completion of crown morphogenesis (E13, five-day post-natal teeth). NF-L transcripts were first seen at the bud stage (E15) next to the dental epithelium at the buccal side of the tooth germ. At the cap stage (E18), NF-L mRNAs were located under the oral epithelium at some distance from dental epithelium. These expression patterns correlate to the previous localization of peripherin-positive cells and suggest that NF-L expression also revealed neuronal cells. Taken together, these results demonstrate that, in addition to projections of peripheral neurons, neuronal cells are associated with the developing teeth. Hence, it is possible that neuronal cells may participate in the regulation of mammalian tooth formation.


2013 ◽  
Vol 16 (2) ◽  
pp. 359-368 ◽  
Author(s):  
A. Szczurkowski ◽  
W. Sienkiewicz ◽  
J. Kuchinka ◽  
J. Kaleczyc

Abstract Histological and histochemical investigations revealed that the pterygopalatine ganglion (PPG) in the chinchilla is a structure closely connected with the maxillary nerve. Macro-morphological observations disclosed two different forms of the ganglion: an elongated stripe representing single agglomeration of nerve cells, and a ganglionated plexus comprising smaller aggregations of neurocytes connected with nerve fibres. Immunohistochemistry revealed that nearly 80% of neuronal cell bodies in PPG stained for acetylcholine transferase (CHAT) but only about 50% contained immunoreactivity to vesicular acetylcholine transporter (VACHT). Many neurons (40%) were vasoactive intestinal polypeptide (VIP)-positive. Double-staining demonstrated that approximately 20% of the VIP-immunoreactive neurons were VACHT-negative. Some neurons (10%) in PPG were simultaneously VACHT/nitric oxide synthase (NOS)- or Met-enkephaline (Met-ENK)/CHAT-positive, respectively. A small number of the perikarya stained for somatostatin (SOM) and solitary nerve cell bodies expressed Leu-ENK- and galanin-immunoreactivity. Interestingly about 5-8% of PPG neurons exhibited immunoreactivity to tyrosine hydroxylase (TH). Intraganglionic nerve fibres containing immunoreactivity to VACHT-, VIP- and Met-ENK- were numerous, those stained for calcitonin gene related peptide (CGRP)- and substance P (SP)- were scarce, and single nerve terminals were TH-, GAL-, VIP- and NOS-positive.


2020 ◽  
Author(s):  
Waldemar Sienkiewicz ◽  
Jacek Kuchinka ◽  
Agnieszka Dudek ◽  
Elżbieta Nowak ◽  
Jerzy Kaleczyc ◽  
...  

AbstractThe available literature provides relatively little information on the morphology of the autonomic head ganglia in rodents including their neurochemical codding. The present study was thus designed to investigate the morphology and neurochemical properties of the otic ganglion in the chinchilla. The results will contribute to our knowledge of the organization of the autonomic nerve system in mammals.Morphological investigations of the otic ganglion were performed using the modified acetylcholinesterase method. The cellular structure was investigated with histological techniques and neurochemical properties were studied with double-labelling immunofluorescence methodMacromorphological investigations allowed the otic ganglion to be identified as a compact, oval agglomeration of neurons and nerve fibers located inside the skull on the medial surface of the mandibular nerve, just above the oval foramen. Multidimensional cross-sections revealed densely arranged neuronal perikarya and two populations of nerve cells differing in size were distinguished. The large cells (40–50 μm) accounted for about 80% of the neurons in the otic ganglion cross-sections. Moreover, a small number of intraganglionic nerve fibers was observed. Immunohistochemical staining revealed that over 85% of the neuronal cell bodies in the otic ganglion contained immunoreactivity to VAChT or ChAT. VIP-immunoreactive perikarya comprised approximately 10% of the ganglionic cells. Double staining revealed the presence of VAChT and NOS-positive neurons which amounted to about 45% of the nerve cells in the otic ganglion. NOS-positive only perikarya comprised approx. 15% of all the neurons. Immunoreactivity to enkephalin, substance P, somatostatin and galanin was expressed in single nerve cell bodies and nerve fibres except numerous SP-positive intraganglionic nerve fibres. Some of them stained also for CGRP. Single neurons stained for TH.The present results, compared with previous findings, suggest the existence interspecies differences in the morphology, cellular structure and immunohistochemical properties of the head autonomic ganglia in mammals.


2009 ◽  
Vol 296 (5) ◽  
pp. H1352-H1363 ◽  
Author(s):  
Jeffrey J. Iliff ◽  
Ruikang Wang ◽  
Darryl C. Zeldin ◽  
Nabil J. Alkayed

Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced from arachidonic acid by cytochrome P-450 (CYP) epoxygenases and metabolized to vicinal diols by soluble epoxide hydrolase (sEH). In the brain, EETs are produced by astrocytes and the vascular endothelium and are involved in the control of cerebral blood flow (CBF). Recent evidence, however, suggests that epoxygenases and sEH are present in perivascular vasodilator nerve fibers innervating the cerebral surface vasculature. In the present study, we tested the hypothesis that EETs are nerve-derived relaxing factors in the cerebral circulation. We first traced these fibers by retrograde labeling in the rat to trigeminal ganglia (TG) and sphenopalatine ganglia (SPG). We then examined the expression of CYP epoxygenases and sEH in these ganglia. RT-PCR and Western blot analysis identified CYP2J3 and CYP2J4 epoxygenase isoforms and sEH in both TG and SPG, and immunofluorescence double labeling identified CYP2J and sEH immunoreactivity in neuronal cell bodies of both ganglia. To evaluate the functional role of EETs in neurogenic vasodilation, we elicited cortical hyperemia by electrically stimulating efferent cerebral perivascular nerve fibers and by chemically stimulating oral trigeminal fibers with capsaicin. Cortical blood flow responses were monitored by laser-Doppler flowmetry. Local administration to the cortical surface of the putative EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (30 μmol/l) attenuated CBF responses to electrical and chemical stimulation. These results suggest that EETs are produced by perivascular nerves and play a role in neurogenic vasodilation of the cerebral vasculature. The findings have important implications to such clinical conditions as migraine, vasospasm after subarachnoid hemorrhage, and stroke.


1978 ◽  
Vol 79 (2) ◽  
pp. 491-499 ◽  
Author(s):  
F Gremo ◽  
D Kobiler ◽  
SH Barondes

We determined the cellular localization of an endogenous lectin at various times during the development of a well-characterized region of chick brain, the optic tectum. This lectin is a carbohydrate-binding protein that interacts with lactose and other saccharides, undergoes striking changes in specific activity with development, and has previously been purified by affinity chromatography from extracts of embryonic chick brain and muscle. Cellular localization in the tectum was done by indirect immunofluoresecent staining, using immunoglobulin G derived from an antiserum raised against pure lectin. No lectin was detectable in the optic tectum examined at 5 days of embryonic development. From approximately 7 days of development, neuronal cell bodies and fibers were labeled by the antibody; and extracts of tectum contained hemagglutination activity that could be inhibited by lactose or by the antiserum. Lectin remained present in many tectal neuronal layers after hatching; but in 2-month-old chicks it was sparse or absent in most of the tectum except for prominent labeling of fibers in the stratum album centrale. The initial appearance of lectin in the optic tectum was not dependent on innervation by optic nerve fibers since bilateral enucleation during embryogenesis did not affect it. Lectin was detectable on the surface of embryonic optic tectal neurons dissociated with a buffer containing EDTA.


Author(s):  
Anthony A. Paparo ◽  
Judith A. Murphy

The purpose of this study was to localize the red neuronal pigment in Mytilus edulis and examine its role in the control of lateral ciliary activity in the gill. The visceral ganglia (Vg) in the central nervous system show an over al red pigmentation. Most red pigments examined in squash preps and cryostat sec tions were localized in the neuronal cell bodies and proximal axon regions. Unstained cryostat sections showed highly localized patches of this pigment scattered throughout the cells in the form of dense granular masses about 5-7 um in diameter, with the individual granules ranging from 0.6-1.3 um in diame ter. Tissue stained with Gomori's method for Fe showed bright blue granular masses of about the same size and structure as previously seen in unstained cryostat sections.Thick section microanalysis (Fig.l) confirmed both the localization and presence of Fe in the nerve cell. These nerve cells of the Vg share with other pigmented photosensitive cells the common cytostructural feature of localization of absorbing molecules in intracellular organelles where they are tightly ordered in fine substructures.


1987 ◽  
Vol 67 (2) ◽  
pp. 269-277 ◽  
Author(s):  
Wesley W. Parke ◽  
Ryo Watanabe

✓ An epispinal system of motor axons virtually covers the ventral and lateral funiculi of the human conus medullaris between the L-2 and S-2 levels. These nerve fibers apparently arise from motor cells of the ventral horn nuclei and join spinal nerve roots caudal to their level of origin. In all observed spinal cords, many of these axons converged at the cord surface and formed an irregular group of ectopic rootlets that could be visually traced to join conventional spinal nerve roots at one to several segments inferior to their original segmental level; occasional rootlets joined a dorsal nerve root. As almost all previous reports of nerve root interconnections involved only the dorsal roots and have been cited to explain a lack of an absolute segmental sensory nerve distribution, it is believed that these intersegmental motor fibers may similarly explain a more diffuse efferent distribution than has previously been suspected.


Sign in / Sign up

Export Citation Format

Share Document