S-Adenosylmethionine Exerts a Protective Effect against Thioacetamide-induced Injury in Primary Cultures of Rat Hepatocytes

2007 ◽  
Vol 35 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Halka Lotková ◽  
Zuzana Čvervinková ◽  
Otto Kučera ◽  
Tomáš Roušar ◽  
Pavla Křiváková

S-adenosylmethionine (SAMe) has been shown to protect hepatocytes from toxic injury, both experimentally-induced in animals and in isolated hepatocytes. The mechanisms by which SAMe protects hepatocytes from injury can result from the pathways of SAMe metabolism. Unfortunately, data documenting the protective effect of SAMe against mitochondrial damage from toxic injury are not widely available. Thioacetamide is frequently-used as a model hepatotoxin, which causes in vivo centrilobular necrosis. Even though thioacetamide-induced liver necrosis in rats was alleviated by SAMe, the mechanisms of this protective effect remain to be verified. The aim of our study was to determine the protective mechanisms of SAMe on thioacetamide-induced hepatocyte injury by using primary hepatocyte cultures. The release of lactate dehydrogenase (LDH) from cells incubated with thioacetamide for 24 hours, was lowered by simultaneous treatment with SAMe, in a dose-dependent manner. The inhibitory effect of SAMe on thioacetamide-induced lipid peroxidation paralleled the effect on cytotoxicity. A decrease in the mitochondrial membrane potential, as determined by Rhodamine 123 accumulation, was also prevented. The attenuation by SAMe of thioacetamide-induced glutathione depletion was determined after subsequent incubation periods of 48 and 72 hours. SAMe protects both cytoplasmic and mitochondrial membranes. This effect was more pronounced during the development of thioacetamide-induced hepatocyte injury that was mediated by lipid peroxidation. Continuation of the SAMe treatment then led to a reduction in glutathione depletion, as a potential consequence of an increase in glutathione production, for which SAMe is a precursor.

2015 ◽  
pp. S637-S646 ◽  
Author(s):  
O. KUČERA ◽  
H. LOTKOVÁ ◽  
O. SOBOTKA ◽  
Z. ČERVINKOVÁ

The aim of our work was to compare the effect of D-galactosamine (GalN) on primary cultures of lean and steatotic rat hepatocytes isolated from intact and fatty liver, respectively. GalN caused more severe injury to steatotic hepatocytes than to lean cells as documented by lactate dehydrogenase leakage. Necrotic mode of cell death strongly prevails over apoptosis since we did not observe any significant increase in activities of caspase 3, 8 and 9 in any group of hepatocytes treated with GalN. Reactive oxygen species (ROS) formation and lipid peroxidation were elevated in a dose-dependent manner by GalN and were significantly more pronounced in fatty hepatocytes. A decrease in the percentage of hepatocytes with energized mitochondria was observed from 30 mM and 10 mM GalN in lean and steatotic hepatocytes, respectively. Our results undoubtedly indicate that steatotic hepatocytes exert higher sensitivity to the toxic effect of GalN. This sensitivity may be caused by more intensive GalN-induced ROS production and lipid peroxidation and by higher susceptibility of mitochondria to loss of mitochondrial membrane potential in steatotic hepatocytes. In our experimental arrangement, apoptosis does not seem to participate considerably on hepatotoxic action of GalN in either group of hepatocytes.


2009 ◽  
Vol 78 (4) ◽  
pp. 603-613 ◽  
Author(s):  
Halka Lotková ◽  
Otto Kučera ◽  
Tomáš Roušar ◽  
René Endlicher ◽  
Pavla Křiváková ◽  
...  

Acetaminophen (AAP) overdose causes severe liver injury and is the leading cause of acute liver injury in humans. The mechanisms participating in its toxic effect are glutathione depletion, oxidative stress and mitochondrial dysfunction. S-adenosylmethionine (SAMe) is the principal biological methyl donor and is also a precursor of glutathione. In our previous studies we have documented a protective action of SAMe against various toxic injuries of rat hepatocytes in primary cultures. The aim of this study was to evaluate a possible protective effect of SAMe against AAP-induced toxic injury of primary rat hepatocytes. Hepatocytes were exposed to AAP (2.5 mM) or AAP together with SAMe at the final concentrations of 5, 25 or 50 mg/l for 24 h. Incubation of hepatocytes with AAP caused a significant increase of the leakage of lactate dehydrogenase (LDH) (p < 0.001) and decline of the activity of cellular dehydrogenases (WST- 1) (p < 0.001). Co-incubation of hepatocytes with SAMe at any dose did not improve these markers of cellular integrity. The functional indicators improved in hepatocytes co-cultured with SAMe - urea production was significantly increased when using the highest dose of SAMe (p < 0.05); albumin synthesis was higher in all cultured hepatocytes exposed to SAMe (p < 0.05). SAMe did not influence AAP-induced decrease of cellular content of glutathione. Mitochondrial respiration of harvested digitonin-permeabilized hepatocytes was measured; Complex II was more sensitive to toxic action of AAP, respiration was decreased by 20%. This decrease was completely abolished by SAMe.


2021 ◽  
Vol 9 (1) ◽  
pp. e001905
Author(s):  
Jung-Hee Hong ◽  
Dae-Hee Kim ◽  
Moon-Kyu Lee

IntroductionThe concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels.Research design and methodsTo investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function.ResultsChronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats.ConclusionThese results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.


Sign in / Sign up

Export Citation Format

Share Document