MEIC Evaluation of Acute Systemic Toxicity

1998 ◽  
Vol 26 (2_suppl) ◽  
pp. 617-658 ◽  
Author(s):  
Björn Ekwall ◽  
Frank A. Barile ◽  
Argelia Castano ◽  
Cecilia Clemedson ◽  
Richard H. Clothier ◽  
...  

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme was set up to evaluate the relevance for human acute toxicity of in vitro cytotoxicity tests. At the end of the project in 1996, 29 laboratories had tested all 50 reference chemicals in 61 cytotoxicity assays. Five previous articles have presented the in vitro data and the human database to be used in the evaluation. This article presents three important parts of the final evaluation: a) a comparison of rat and mouse oral LD50 with human acute lethal doses for all 50 chemicals; b) a display of the correlations between IC50 (concentration causing 50% inhibition) values from all 61 assays and three independent sets of human acute lethal blood concentrations, i.e. clinical lethal concentrations, forensic lethal concentrations, and peak concentrations; and c) a series of comparisons between average IC50 values from ten human cell line 24-hour assays and human lethal blood concentrations. In the latter comparisons, results from correlations were linked with known human toxicity data for the chemicals, to provide an understanding of correlative results. This correlative/mechanistic approach had the double purpose of assessing the relevance of the in vitro cytotoxicities, and of testing a series of hypotheses connected with the basal cytotoxicity concept. The results of the studies were as follows. Rat LD50 predictions of human lethal dosage were only relatively good (R2 = 0.61), while mouse LD50s gave a somewhat better prediction (R2 = 0.65). Comparisons performed between IC50 values from the 61 assays and the human lethal peak concentrations demonstrated that human ceil line tests gave the best average results (R2 = 0.64), while mammalian and fish cell tests correlated less well (R2 = 0.52–0.58), followed by non-fish ecotoxicological tests (R2 = 0.36). Most of the 61 assays underpredicted human toxicity for digoxin, malathion, carbon tetrachloride and atropine sulphate. In the correlative/mechanistic study, the 50 chemicals were first separated into three groups: A = fast-acting chemicals with a restricted passage across the blood–brain barrier; B = slow-acting chemicals with a restricted passage across the blood–brain barrier; and C = chemicals which cross the blood–brain barrier freely, while inducing a non-specific excitation/depression of the central nervous system (CNS). The IC50 values for chemicals in group C were divided by a factor of ten to compensate for a hypothetical extra vulnerability of the CNS to cytotoxicity. Finally, the average human cell line IC50 values (24-hour IC50 for groups A and C, and after 48-hour for group B) were compared with relevant human lethal blood concentrations (peak concentrations for groups A and C, and 48-hour concentrations for group B). As a result, in vitro toxicity and in vivo toxicity correlated very well for all groups (R2 = 0.98, 0.82 and 0.85, respectively). No clear overprediction of human toxicity was made by the human cell tests. The human cell line tests underpredicted human toxicity for only four of the 50 chemicals. These outlier chemicals were digoxin, malathion, nicotine and atropine sulphate, all of which have a lethal action in man through interaction with specific target sites not usually found in cell lines. Potassium cyanide has a cellular human lethal action which cannot be measured by standard anaerobic cell lines. The good prediction of the human lethal whole-blood concentration of this chemical was not conclusive, i.e. was probably a “false good correlation”. Another two chemicals in group C resulted in “false good correlations”, i.e. paracetamol and paraquat. The comparisons thus indicated that human cell line cytotoxicities are relevant for the human acute lethal action for 43 of the 50 chemicals. The results strongly support the basal cytotoxicity concept, and further point to the non-specific CNS depression being the obligatory reaction of humans to cytotoxic concentrations of chemicals, provided that the chemicals are able to pass the blood–brain barrier.

1997 ◽  
Vol 11 (13) ◽  
pp. 1187-1197 ◽  
Author(s):  
Arumugam Muruganandam ◽  
Leonie Moorhouse Herx ◽  
Robert Monette ◽  
Jon P. Durkin ◽  
Danica B. Stanimirovic

2006 ◽  
Vol 125 (1) ◽  
pp. 127-141 ◽  
Author(s):  
Winfried Neuhaus ◽  
Regina Lauer ◽  
Silvester Oelzant ◽  
Urs P. Fringeli ◽  
Gerhard F. Ecker ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 161
Author(s):  
Marián Mantecón-Oria ◽  
Nazely Diban ◽  
Maria T. Berciano ◽  
Maria J. Rivero ◽  
Oana David ◽  
...  

There is a huge interest in developing novel hollow fiber (HF) membranes able to modulate neural differentiation to produce in vitro blood–brain barrier (BBB) models for biomedical and pharmaceutical research, due to the low cell-inductive properties of the polymer HFs used in current BBB models. In this work, poly(ε-caprolactone) (PCL) and composite PCL/graphene (PCL/G) HF membranes were prepared by phase inversion and were characterized in terms of mechanical, electrical, morphological, chemical, and mass transport properties. The presence of graphene in PCL/G membranes enlarged the pore size and the water flux and presented significantly higher electrical conductivity than PCL HFs. A biocompatibility assay showed that PCL/G HFs significantly increased C6 cells adhesion and differentiation towards astrocytes, which may be attributed to their higher electrical conductivity in comparison to PCL HFs. On the other hand, PCL/G membranes produced a cytotoxic effect on the endothelial cell line HUVEC presumably related with a higher production of intracellular reactive oxygen species induced by the nanomaterial in this particular cell line. These results prove the potential of PCL HF membranes to grow endothelial cells and PCL/G HF membranes to differentiate astrocytes, the two characteristic cell types that could develop in vitro BBB models in future 3D co-culture systems.


1996 ◽  
Vol 24 (3) ◽  
pp. 349-357
Author(s):  
Bellina Veronesi ◽  
Kent Carlsón ◽  
Marion Ehrich

The development of a cell culture model which simulates the properties of the blood–brain barrier (BBB) is necessary for the detection of neurotoxic chemicals that can disrupt the barrier, and to provide a more “risk relevant” in vitro screening battery. The present study evaluates the Madin-Darby canine kidney (MDCK) epithelial cell line for this purpose. Changes in electrical resistance and enzyme activities were correlated in confluent MDCK cells exposed to the neurotoxic metal, triethyl tin (TET). Concentrations of TET (0.001–10μM) were established that produced depression in electrical resistance of the MDCK cells after exposure for 8 hours or caused fluorescein leakage after exposure for 72 hours. Confluent cultures of MDCK cells were then exposed to these concentrations of TET and assayed after exposure for 24 hours and 72 hours for changes in those enzymes common to both epithelial and cerebral endothelial cells. The results indicated that increased alkaline phosphatase (APP), γ-glutamyl transpeptidase (GGTP) and superoxide dismutase (SOD) characterised the loss of electrical resistance and permeability disruption in TET-exposed MDCK confluent cultures. Relative increases in APP and decreases in GGTP activities preceded cytotoxicity, which was associated with a high SOD activity. Such enzyme changes may be predictive endpoints of barrier cell disruption by neurotoxic metals in this cell line and support the additional evaluation of the MDCK cell line as an in vitro “screen” for chemicals that disrupt the BBB.


2012 ◽  
Vol 1479 ◽  
pp. 17-30 ◽  
Author(s):  
Carina A. Cantrill ◽  
Robert A. Skinner ◽  
Nancy J. Rothwell ◽  
Jeffrey I. Penny

2014 ◽  
Vol 15 (3) ◽  
pp. 3612-3623 ◽  
Author(s):  
Shaoling Wu ◽  
Guoqi Li ◽  
Xiao Li ◽  
Caina Lin ◽  
Ding Yu ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1340 ◽  
Author(s):  
Jakub Chlebek ◽  
Jan Korábečný ◽  
Rafael Doležal ◽  
Šárka Štěpánková ◽  
Daniel Pérez ◽  
...  

In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman’s spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood–brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document