scholarly journals Surface Chemistry in Modern Nanotechnologies

1996 ◽  
Vol 14 (5) ◽  
pp. 295-300 ◽  
Author(s):  
V.M. Ogenko

A review of the properties of fine oxide surfaces at the nano level is given based on the author's work. It includes a scheme related to the structure of pyrogenic silica and the changes induced by dehydroxylation as studied by quantum chemical and spectroscopic methods. The application of non-linear optical methods has appeared to be useful for the investigation of disperse solid structures. Quantitative measurements of intermolecular interaction have been obtained by light scattering. Alteration of the surface activity due to gas-phase electron–donor molecule action on chemisorbed complexes or functional groups on the surface is considered. It is also shown how the physicochemical properties of a solid surface can be changed as a result of chemical modification. The investigations discussed could lead in practice to the creation of new lightweight ceramic materials, adsorbents, catalyst supports, hollow-body microspherical fillers and medicinal preparations. Some of these are useful for nano electronics and instrument design as well as for the solution of some meteorological problems.

2019 ◽  
Author(s):  
Javad Noroozi ◽  
William Smith

We use molecular dynamics free energy simulations in conjunction with quantum chemical calculations of gas phase reaction free energy to predict alkanolamines pka values. <br>


2016 ◽  
Vol 273 ◽  
pp. 91-98 ◽  
Author(s):  
Jürgen Ulpts ◽  
Wolfgang Dreher ◽  
Lars Kiewidt ◽  
Miriam Schubert ◽  
Jorg Thöming

2020 ◽  
Author(s):  
Konstantinos Kalamatianos

Accurate calculations of standard molar enthalpies of formation (ΔΗf°)m(g) and carbon-halogen bond dissociation enthalpies, BDE, of a variety of halomethanes with relevance on several atmospheric chemical processes and particularly to ozone destruction, were performed in the gas phase at 298.15 K. The (ΔΗf°)m(g) of the radicals formed through bond dissociations have also been computed. Ab initio computational methods and isodesmic reaction schemes were used. It is found that for the large majority of these species, the gold standard method of quantum chemistry (CCSD(T)) and even MP2 are capable to predict enthalpy values nearing chemical accuracy provided that isodesmic reaction schemes are used. New estimates for standard molar enthalpies of formation and BDE are suggested including for species that to our knowledge there are no experimental (ΔΗf°)m(g) (CHCl2Br, CHBr2Cl, CHBrCl, CHICl, CHIBr) or BDE values (CHCl2Br, CHBr2Cl, CHBrCl, CHICl, CHIBr) available in the literature. The method and calculational procedures presented may profitably be used to obtain accurate (ΔΗf°)m(g) and BDE values for these species.


Author(s):  
Дмитрий Александрович Мачнев ◽  
Игорь Владимирович Нечаев ◽  
Александр Викторович Введенский ◽  
Олег Александрович Козадеров

Эндофуллерены, содержащие один или несколько атомов металла внутри углеродного каркаса (металлофуллерены), представляют большой практический интерес в связи с возможностью создания на их основе эффективных контрастирующих агентов для магнитно-резонансной томографии (МРТ), антиоксидантных и противораковых средств. Данные соединения могут быть также использованы в спинтронике для создания наноразмерных электронных устройств. В настоящей работе в рамках теории функционала плотности произведен расчет структурных, электронных и термодинамических характеристик эндофуллеренов металлов подгруппы скандия с числом инкапсулированных атомов от одного до семи в газовой фазе. Описаны стабильные структуры с симметриямиCs, C2, C3 и Ci, соответствующие позициям, занимаемым атомами металла внутри каркаса фуллерена. Установлен теоретический предел числа атомов металла, при котором структура эндофуллерена сохраняет устойчивость – шесть атомов для скандия, четыре для иттрия и три для лантана. Расчет показывает, что наиболее устойчивыми являются структуры с двумя и тремя инкапсулированными атомами. Описана зависимость между числом инкапсулированных атомов металла и характером распределения электронной плотности. Общий заряд на инкапсулированном металлическом кластере положителен для соединений Me@C60 – Me3@C60, слабо положителен для Me4@C60(отдельные атомы имеют отрицательный заряд) и отрицателен для соединений Me5C60 – Me6@C60. Описан эффект спиновой утечки для структур с основным дублетным спиновым состоянием. Для соединений с тремя и более инкапсулированными атомами данный эффект незначителен, что указывает на нецелесообразность создания контрастирующих агентов для МРТ на их основе.         ЛИТЕРАТУРА 1. Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature.1985;318(6042): 162–163. DOI: https://doi.org/10.1038/318162a02. Kratschmer W., Lamb L. D., Fostiropoulos K., Huffman D. R. Solid C60: a new form of carbon. Nature.1990;347(6291): 354–358. DOI: https://doi.org/10.1038/347354a03. Buchachenko A. L. Compressed atoms. J. Phys. Chem. B. 2001;105(25): 5839–5846. DOI: https://doi.org/10.1021/jp003852u4. Koltover V. K., Bubnov V. P., Estrin Y. I., Lodygina V. P., Davydov R. M., Subramoni M., Manoharan P. T.Spin-transfer complexesofendohedralmetallofullerenes: ENDOR and NMR evidences. Phys. Chem. Chem. Phys. 2003;5(13): 2774–2777. DOI:https://doi.org/10.1039/b302917d5. Raebiger J. W., Bolskar R. D. Improved production and separation processes for gadoliniummetallofullerenes. J. Phys. Chem. C. 2008;112(17): 6605–6612. DOI:  https://doi.org/10.1021/jp076437b6. Gaussian 09, Revision D.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino,B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi,J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,Gaussian, Inc., Wallingford CT, 2016. Available at: http://gaussian.com/g09citation7. Neese F. The ORCA program system. WIREs Computational Molecular Science. 2012;2(1): 73–78.DOI: https://doi.org/10.1002/wcms.818. Laikov D. N., Ustynyuk Y. A. PRIRODA-04: a quantum-chemical program suite. New possibilitiesin the study of molecular systems with the application of parallel computing. Russian Chemical Bulletin.2005;54(3): 820–826. DOI: https://doi.org/10.1007/s11172-005-0329-x9. Chandrasekharaiah M. S., Gingerich K. A. Chapter 86 Thermodynamic properties of gaseousspecies. In: Handbook on the Physics and Chemistry of Rare Earths. 1989;12: 409–431. DOI: https://doi.org/10.1016/s0168-1273(89)12010-810. Kohl F. J., Stearns C. A. Vaporization thermodynamics of yttrium dicarbide–carbon systemand dissociation energy of yttrium dicarbide and tetracarbide. J. Chem. Phys., 1970;52(12): 6310–6315.DOI: https://doi.org/10.1063/1.167294211. Gingerich K. A., Nappi B. N., Pelino M., Haque R. Stability of complex dilanthanum carbide molecules.Inorganica Chimica Acta. 1981;54: L141–L142. DOI: https://doi.org/10.1016/s0020-1693(00)95414-812. Hedberg K., Hedberg L., Bethune D. S., Brown C. A., Dorn H. C., Johnson R. D., de Vries M. S.Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction.Science. 1991;254(5030): 410–412. DOI: https://doi.org/10.1126/science.254.5030.41013. Bethune D. S., Meijer G., Tang W. C., Rosen H. J., Golden W. G., Seki H., Brown C. F., de Vries M. S.Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullereneclusters Chem. Phys. Lett., 1991; 179(1–2): 181–186.DOI: https://doi.org/10.1016/0009-2614(91)90312-w14. Эмсли Дж. Элементы. М.: Мир; 1993. 256 c.15. Раков Э. Г. Нанотрубки и фуллерены. Учебн. пособие. М.: Логос; 2006. 376 с.16. Елецкий А. В., Смирнов В. М. Фуллерены. Успехи физических наук.1993;2: 33–60. Режим доступа: https://ufn.ru/ru/articles/1993/2/b/


2013 ◽  
Vol 186 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Weijuan Yang ◽  
Zhijiang Han ◽  
Junhu Zhou ◽  
Jianzhong Liu ◽  
Kefa Cen

Sign in / Sign up

Export Citation Format

Share Document