buckminsterfullerene c60
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 5)

H-INDEX

36
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Aleksandra Nyga ◽  
Agata Blacha-Grzechnik ◽  
Przemyslaw Podsiadly ◽  
Alicja Duda ◽  
Kinga Kepska ◽  
...  

Poly(3-hexylthiophene) thin films containing carbon-based nanostructures, i.e. fullerenes such as Buckminsterfullerene (C60) or phenyl-C61-butyric acid methyl ester (PCBM), or single-walled carbon nanotubes, were investigated as heterogeneous photosensitizers producing singlet oxygen...


Author(s):  
Дмитрий Александрович Мачнев ◽  
Игорь Владимирович Нечаев ◽  
Александр Викторович Введенский ◽  
Олег Александрович Козадеров

Эндофуллерены, содержащие один или несколько атомов металла внутри углеродного каркаса (металлофуллерены), представляют большой практический интерес в связи с возможностью создания на их основе эффективных контрастирующих агентов для магнитно-резонансной томографии (МРТ), антиоксидантных и противораковых средств. Данные соединения могут быть также использованы в спинтронике для создания наноразмерных электронных устройств. В настоящей работе в рамках теории функционала плотности произведен расчет структурных, электронных и термодинамических характеристик эндофуллеренов металлов подгруппы скандия с числом инкапсулированных атомов от одного до семи в газовой фазе. Описаны стабильные структуры с симметриямиCs, C2, C3 и Ci, соответствующие позициям, занимаемым атомами металла внутри каркаса фуллерена. Установлен теоретический предел числа атомов металла, при котором структура эндофуллерена сохраняет устойчивость – шесть атомов для скандия, четыре для иттрия и три для лантана. Расчет показывает, что наиболее устойчивыми являются структуры с двумя и тремя инкапсулированными атомами. Описана зависимость между числом инкапсулированных атомов металла и характером распределения электронной плотности. Общий заряд на инкапсулированном металлическом кластере положителен для соединений Me@C60 – Me3@C60, слабо положителен для Me4@C60(отдельные атомы имеют отрицательный заряд) и отрицателен для соединений Me5C60 – Me6@C60. Описан эффект спиновой утечки для структур с основным дублетным спиновым состоянием. Для соединений с тремя и более инкапсулированными атомами данный эффект незначителен, что указывает на нецелесообразность создания контрастирующих агентов для МРТ на их основе.         ЛИТЕРАТУРА 1. Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature.1985;318(6042): 162–163. DOI: https://doi.org/10.1038/318162a02. Kratschmer W., Lamb L. D., Fostiropoulos K., Huffman D. R. Solid C60: a new form of carbon. Nature.1990;347(6291): 354–358. DOI: https://doi.org/10.1038/347354a03. Buchachenko A. L. Compressed atoms. J. Phys. Chem. B. 2001;105(25): 5839–5846. DOI: https://doi.org/10.1021/jp003852u4. Koltover V. K., Bubnov V. P., Estrin Y. I., Lodygina V. P., Davydov R. M., Subramoni M., Manoharan P. T.Spin-transfer complexesofendohedralmetallofullerenes: ENDOR and NMR evidences. Phys. Chem. Chem. Phys. 2003;5(13): 2774–2777. DOI:https://doi.org/10.1039/b302917d5. Raebiger J. W., Bolskar R. D. Improved production and separation processes for gadoliniummetallofullerenes. J. Phys. Chem. C. 2008;112(17): 6605–6612. DOI:  https://doi.org/10.1021/jp076437b6. Gaussian 09, Revision D.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino,B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi,J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,Gaussian, Inc., Wallingford CT, 2016. Available at: http://gaussian.com/g09citation7. Neese F. The ORCA program system. WIREs Computational Molecular Science. 2012;2(1): 73–78.DOI: https://doi.org/10.1002/wcms.818. Laikov D. N., Ustynyuk Y. A. PRIRODA-04: a quantum-chemical program suite. New possibilitiesin the study of molecular systems with the application of parallel computing. Russian Chemical Bulletin.2005;54(3): 820–826. DOI: https://doi.org/10.1007/s11172-005-0329-x9. Chandrasekharaiah M. S., Gingerich K. A. Chapter 86 Thermodynamic properties of gaseousspecies. In: Handbook on the Physics and Chemistry of Rare Earths. 1989;12: 409–431. DOI: https://doi.org/10.1016/s0168-1273(89)12010-810. Kohl F. J., Stearns C. A. Vaporization thermodynamics of yttrium dicarbide–carbon systemand dissociation energy of yttrium dicarbide and tetracarbide. J. Chem. Phys., 1970;52(12): 6310–6315.DOI: https://doi.org/10.1063/1.167294211. Gingerich K. A., Nappi B. N., Pelino M., Haque R. Stability of complex dilanthanum carbide molecules.Inorganica Chimica Acta. 1981;54: L141–L142. DOI: https://doi.org/10.1016/s0020-1693(00)95414-812. Hedberg K., Hedberg L., Bethune D. S., Brown C. A., Dorn H. C., Johnson R. D., de Vries M. S.Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction.Science. 1991;254(5030): 410–412. DOI: https://doi.org/10.1126/science.254.5030.41013. Bethune D. S., Meijer G., Tang W. C., Rosen H. J., Golden W. G., Seki H., Brown C. F., de Vries M. S.Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullereneclusters Chem. Phys. Lett., 1991; 179(1–2): 181–186.DOI: https://doi.org/10.1016/0009-2614(91)90312-w14. Эмсли Дж. Элементы. М.: Мир; 1993. 256 c.15. Раков Э. Г. Нанотрубки и фуллерены. Учебн. пособие. М.: Логос; 2006. 376 с.16. Елецкий А. В., Смирнов В. М. Фуллерены. Успехи физических наук.1993;2: 33–60. Режим доступа: https://ufn.ru/ru/articles/1993/2/b/


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1484 ◽  
Author(s):  
Navaratnarajah Kuganathan ◽  
Ratnasothy Srikaran ◽  
Alexander Chroneos

Buckminsterfullerene (C60) has been advocated as a perfect candidate material for the encapsulation and adsorption of a variety of metals and the resultant metallofullerenes have been considered for the use in different scientific, technological and medical areas. Using spin-polarized density functional theory together with dispersion correction, we examine the stability and electronic structures of endohedral and exohedral complexes formed between coinage metals (Cu, Ag and Au) and both non-defective and defective C60. Encapsulation is exoergic in both forms of C60 and their encapsulation energies are almost the same. Exohedral adsorption of all three metals is stronger than that of endohedral encapsulation in the non-defective C60. Structures and the stability of atoms interacting with an outer surface of a defective C60 are also discussed. As the atoms are stable both inside and outside the C60, the resultant complexes can be of interest in different scientific and medical fields. Furthermore, all complexes exhibit magnetic moments, inferring that they can be used as spintronic materials.


2019 ◽  
pp. 115-146
Author(s):  
Sourav Bhattacharjee

Carbon ◽  
2018 ◽  
Vol 139 ◽  
pp. 906-912 ◽  
Author(s):  
Mark H. Stockett ◽  
Michael Wolf ◽  
Michael Gatchell ◽  
Henning T. Schmidt ◽  
Henning Zettergren ◽  
...  

2017 ◽  
pp. 936-947
Author(s):  
Linda Ansone ◽  
Maris Klavins

The interaction between buckminsterfullerene C60 and humic acids (HA) of different origins was compared using fluorescence spectroscopy as a function of pH, humic acid concentration, ionic strength. Binding constants between fullerene and humic acids were calculated. It can be suggested that the complexation was driven by hydrophobic interactions depending on the properties of the interacting compounds. Hydrophobic interaction model as indicated by linear Stern-Volmer plots and high Kd values is characterizing the interaction between buckminsterfullerene C60 and humic acids The results of this study support the development of an understanding of the fate of nanomaterials in the environment as well as the development of analytical methods for nanomaterials in waters and wastewater treatment approaches.


Sign in / Sign up

Export Citation Format

Share Document