scholarly journals Single- and dual-arm motion planning with heuristic search

2013 ◽  
Vol 33 (2) ◽  
pp. 305-320 ◽  
Author(s):  
Benjamin Cohen ◽  
Sachin Chitta ◽  
Maxim Likhachev
2017 ◽  
Vol 7 (12) ◽  
pp. 1210 ◽  
Author(s):  
Jun Kurosu ◽  
Ayanori Yorozu ◽  
Masaki Takahashi

1993 ◽  
Vol 02 (02) ◽  
pp. 163-180 ◽  
Author(s):  
DIANE J. COOK ◽  
GARY LYONS

Heuristic search is a fundamental component of Artificial Intelligence applications. Because search routines are frequently also a computational bottleneck, numerous methods have been explored to increase the efficiency of search. Recently, researchers have begun investigating methods of using parallel MIMD and SIMD hardware to speed up the search process. In this paper, we present a massively-parallel SIMD approach to search named MIDA* search. The components of MIDA* include a very fast distribution algorithm which biases the search to one side of the tree, and an incrementally-deepening depthfirst search of all the processors in parallel. We show the results of applying MIDA* to instances of the Fifteen Puzzle problem and to the robot arm motion planning problem. Results reveal an efficiency of 74% and a speedup of 8553 and 492 over serial and 16-processor MIMD algorithms, respectively, when finding a solution to the Fifteen Puzzle problem that is close to optimal.


2012 ◽  
Vol 516 ◽  
pp. 234-239 ◽  
Author(s):  
Wei Wu ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Recently, new needs have emerged to control not only linear motion but also rotational motion in high-accuracy manufacturing fields. Many five-axis-controlled machining centres are therefore in use. However, one problem has been the difficulty of creating flexible manufacturing systems with methods based on the use of these machine tools. On the other hand, the industrial dual-arm robot has gained attention as a new way to achieve accurate linear and rotational motion in an attempt to control a working plate like a machine tool table. In the present report, a cooperating dual-arm motion is demonstrated to make it feasible to perform stable operation control, such as controlling the working plate to keep a ball rolling around a circular path on it. As a result, we investigated the influence of each axis motion error on a ball-rolling path.


Sign in / Sign up

Export Citation Format

Share Document