Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis

2021 ◽  
pp. 028418512110358
Author(s):  
Aurélien Delabie ◽  
Roger Bouzerar ◽  
Raphaël Pichois ◽  
Xavier Desdoit ◽  
Jérémie Vial ◽  
...  

Background Patients with urolithiasis undergo radiation overexposure from computed tomography (CT) scans. Improvement of image reconstruction is necessary for radiation dose reduction. Purpose To evaluate a deep learning-based reconstruction algorithm for CT (DLIR) in the detection of urolithiasis at low-dose non-enhanced abdominopelvic CT. Material and Methods A total of 75 patients who underwent low-dose abdominopelvic CT for urolithiasis were retrospectively included. Each examination included three reconstructions: DLIR; filtered back projection (FBP); and hybrid iterative reconstruction (IR; ASiR-V 70%). Image quality was subjectively and objectively assessed using attenuation and noise measurements in order to calculate the signal-to-noise ratio (SNR), absolute contrast, and contrast-to-noise ratio (CNR). Attenuation of the largest stones were also compared. Detectability of urinary stones was assessed by two observers. Results Image noise was significantly reduced with DLIR: 7.2 versus 17 and 22 for ASiR-V 70% and FBP, respectively. Similarly, SNR and CNR were also higher compared to the standard reconstructions. When the structures had close attenuation values, contrast was lower with DLIR compared to ASiR-V. Attenuation of stones was also lowered in the DLIR series. Subjective image quality was significantly higher with DLIR. The detectability of all stones and stones >3 mm was excellent with DLIR for the two observers (intraclass correlation [ICC] = 0.93 vs. 0.96 and 0.95 vs. 0.99). For smaller stones (<3 mm), results were different (ICC = 0.77 vs. 0.86). Conclusion For low-dose abdominopelvic CT, DLIR reconstruction exhibited image quality superior to ASiR-V and FBP as well as an excellent detection of urinary stones.

2021 ◽  
Vol 94 (1120) ◽  
pp. 20201291
Author(s):  
Yannan Cheng ◽  
Yangyang Han ◽  
Jianying Li ◽  
Ganglian Fan ◽  
Le Cao ◽  
...  

Objectives: To compare the image quality of low-dose CT urography (LD-CTU) using deep learning image reconstruction (DLIR) with conventional CTU (C-CTU) using adaptive statistical iterative reconstruction (ASIR-V). Methods: This was a prospective, single-institutional study using the excretory phase CTU images for analysis. Patients were assigned to the LD-DLIR group (100kV and automatic mA modulation for noise index (NI) of 23) and C-ASIR-V group (100kV and NI of 10) according to the scan protocols in the excretory phase. Two radiologists independently assessed the overall image quality, artifacts, noise and sharpness of urinary tracts. Additionally, the mean CT attenuation, signal-to-noise ratio (SNR) and contrast-to-noise (CNR) in the urinary tracts were evaluated. Results: 26 patients each were included in the LD-DLIR group (10 males and 16 females; mean age: 57.23 years, range: 33–76 years) and C-ASIR-V group (14 males and 12 females; mean age: 60 years, range: 33–77 years). LD-DLIR group used a significantly lower effective radiation dose compared with the C-ASIR-V group (2.01 ± 0.44 mSv vs 6.9 ± 1.46 mSv, p < 0.001). LD-DLIR group showed good overall image quality with average score >4 and was similar to that of the C-ASIR-V group. Both groups had adequate and similar attenuation value, SNR and CNR in most segments of urinary tracts. Conclusion: It is feasibility to provide comparable image quality while reducing 71% radiation dose in low-dose CTU with a deep learning image reconstruction algorithm compared to the conventional CTU with ASIR-V. Advances in knowledge: (1) CT urography with deep learning reconstruction algorithm can reduce the radiation dose by 71% while still maintaining image quality.


2021 ◽  
pp. 197140092110087
Author(s):  
Andrea De Vito ◽  
Cesare Maino ◽  
Sophie Lombardi ◽  
Maria Ragusi ◽  
Cammillo Talei Franzesi ◽  
...  

Background and purpose To evaluate the added value of a model-based reconstruction algorithm in the assessment of acute traumatic brain lesions in emergency non-enhanced computed tomography, in comparison with a standard hybrid iterative reconstruction approach. Materials and methods We retrospectively evaluated a total of 350 patients who underwent a 256-row non-enhanced computed tomography scan at the emergency department for brain trauma. Images were reconstructed both with hybrid and model-based iterative algorithm. Two radiologists, blinded to clinical data, recorded the presence, nature, number, and location of acute findings. Subjective image quality was performed using a 4-point scale. Objective image quality was determined by computing the signal-to-noise ratio and contrast-to-noise ratio. The agreement between the two readers was evaluated using k-statistics. Results A subjective image quality analysis using model-based iterative reconstruction gave a higher detection rate of acute trauma-related lesions in comparison to hybrid iterative reconstruction (extradural haematomas 116 vs. 68, subdural haemorrhages 162 vs. 98, subarachnoid haemorrhages 118 vs. 78, parenchymal haemorrhages 94 vs. 64, contusive lesions 36 vs. 28, diffuse axonal injuries 75 vs. 31; all P<0.001). Inter-observer agreement was moderate to excellent in evaluating all injuries (extradural haematomas k=0.79, subdural haemorrhages k=0.82, subarachnoid haemorrhages k=0.91, parenchymal haemorrhages k=0.98, contusive lesions k=0.88, diffuse axonal injuries k=0.70). Quantitatively, the mean standard deviation of the thalamus on model-based iterative reconstruction images was lower in comparison to hybrid iterative one (2.12 ± 0.92 vsa 3.52 ± 1.10; P=0.030) while the contrast-to-noise ratio and signal-to-noise ratio were significantly higher (contrast-to-noise ratio 3.06 ± 0.55 vs. 1.55 ± 0.68, signal-to-noise ratio 14.51 ± 1.78 vs. 8.62 ± 1.88; P<0.0001). Median subjective image quality values for model-based iterative reconstruction were significantly higher ( P=0.003). Conclusion Model-based iterative reconstruction, offering a higher image quality at a thinner slice, allowed the identification of a higher number of acute traumatic lesions than hybrid iterative reconstruction, with a significant reduction of noise.


2021 ◽  
Vol 94 (1121) ◽  
pp. 20201329
Author(s):  
Yoshifumi Noda ◽  
Tetsuro Kaga ◽  
Nobuyuki Kawai ◽  
Toshiharu Miyoshi ◽  
Hiroshi Kawada ◽  
...  

Objectives: To evaluate image quality and lesion detection capabilities of low-dose (LD) portal venous phase whole-body computed tomography (CT) using deep learning image reconstruction (DLIR). Methods: The study cohort of 59 consecutive patients (mean age, 67.2 years) who underwent whole-body LD CT and a prior standard-dose (SD) CT reconstructed with hybrid iterative reconstruction (SD-IR) within one year for surveillance of malignancy were assessed. The LD CT images were reconstructed with hybrid iterative reconstruction of 40% (LD-IR) and DLIR (LD-DLIR). The radiologists independently evaluated image quality (5-point scale) and lesion detection. Attenuation values in Hounsfield units (HU) of the liver, pancreas, spleen, abdominal aorta, and portal vein; the background noise and signal-to-noise ratio (SNR) of the liver, pancreas, and spleen were calculated. Qualitative and quantitative parameters were compared between the SD-IR, LD-IR, and LD-DLIR images. The CT dose-index volumes (CTDIvol) and dose-length product (DLP) were compared between SD and LD scans. Results: The image quality and lesion detection rate of the LD-DLIR was comparable to the SD-IR. The image quality was significantly better in SD-IR than in LD-IR (p < 0.017). The attenuation values of all anatomical structures were comparable between the SD-IR and LD-DLIR (p = 0.28–0.96). However, background noise was significantly lower in the LD-DLIR (p < 0.001) and resulted in improved SNRs (p < 0.001) compared to the SD-IR and LD-IR images. The mean CTDIvol and DLP were significantly lower in the LD (2.9 mGy and 216.2 mGy•cm) than in the SD (13.5 mGy and 1011.6 mGy•cm) (p < 0.0001). Conclusion: LD CT images reconstructed with DLIR enable radiation dose reduction of >75% while maintaining image quality and lesion detection rate and superior SNR in comparison to SD-IR. Advances in knowledge: Deep learning image reconstruction algorithm enables around 80% reduction in radiation dose while maintaining the image quality and lesion detection compared to standard-dose whole-body CT.


2021 ◽  
Vol 94 (1117) ◽  
pp. 20200677
Author(s):  
Andrea Steuwe ◽  
Marie Weber ◽  
Oliver Thomas Bethge ◽  
Christin Rademacher ◽  
Matthias Boschheidgen ◽  
...  

Objectives: Modern reconstruction and post-processing software aims at reducing image noise in CT images, potentially allowing for a reduction of the employed radiation exposure. This study aimed at assessing the influence of a novel deep-learning based software on the subjective and objective image quality compared to two traditional methods [filtered back-projection (FBP), iterative reconstruction (IR)]. Methods: In this institutional review board-approved retrospective study, abdominal low-dose CT images of 27 patients (mean age 38 ± 12 years, volumetric CT dose index 2.9 ± 1.8 mGy) were reconstructed with IR, FBP and, furthermore, post-processed using a novel software. For the three reconstructions, qualitative and quantitative image quality was evaluated by means of CT numbers, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in six different ROIs. Additionally, the reconstructions were compared using SNR, peak SNR, root mean square error and mean absolute error to assess structural differences. Results: On average, CT numbers varied within 1 Hounsfield unit (HU) for the three assessed methods in the assessed ROIs. In soft tissue, image noise was up to 42% lower compared to FBP and up to 27% lower to IR when applying the novel software. Consequently, SNR and CNR were highest with the novel software. For both IR and the novel software, subjective image quality was equal but higher than the image quality of FBP-images. Conclusion: The assessed software reduces image noise while maintaining image information, even in comparison to IR, allowing for a potential dose reduction of approximately 20% in abdominal CT imaging. Advances in knowledge: The assessed software reduces image noise by up to 27% compared to IR and 48% compared to FBP while maintaining the image information. The reduced image noise allows for a potential dose reduction of approximately 20% in abdominal imaging.


2021 ◽  
Vol 10 (6) ◽  
pp. 205846012110239
Author(s):  
Nobuo Kashiwagi ◽  
Hisashi Tanaka ◽  
Yuichi Yamashita ◽  
Hiroto Takahashi ◽  
Yoshimori Kassai ◽  
...  

Background Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites and at different field strengths. Purpose To validate the denoising performance of deep learning-based reconstruction method trained by brain and knee 3T magnetic resonance images when applied to lumbar 1.5T magnetic resonance images. Material and Methods Using a 1.5T scanner, we obtained lumber T2-weighted sequences in 10 volunteers using three different scanning times: 228 s (standard), 119 s (double-fast), and 68 s (triple-fast). We compared the images obtained by the standard sequence with those obtained by the deep learning-based reconstruction-applied faster sequences. Results Signal-to-noise ratio values were significantly higher for deep learning-based reconstruction-double-fast than for standard and did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Contrast-to-noise ratio values also did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Qualitative scores for perceived signal-to-noise ratio and overall image quality were significantly higher for deep learning-based reconstruction-double fast and deep learning-based reconstruction-triple-fast than for standard. Average scores for sharpness, contrast, and structure visibility were equal to or higher for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. The average scores for artifact were lower for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. Conclusion The deep learning-based reconstruction method trained by 3T brain and knee images may reduce the scanning time of 1.5T lumbar magnetic resonance images by one-third without sacrificing image quality.


2021 ◽  
Vol 10 (9) ◽  
pp. 205846012110432
Author(s):  
Christian Wong ◽  
Jens Adriansen ◽  
Jytte Jeppsen ◽  
Andreas Balslev-Clausen

Background Radiographic images in adolescent idiopathic scoliosis (AIS) have a potential radiation-induced oncogenic effect; thus lowering radiation dose by using fluoroscopic imaging technique of low-dose fluoroscopic technique (LFT) which might be relevant for clinical evaluation. Purpose To compare radiographs of LFT with gold standard radiographs for AIS ordinary radiographic technique (ORT). Material and Methods Image quality was evaluated for LTF and ORT of a child phantom and two 3D-printed models (3DPSs) of AIS. We measured the primary physical characteristics of noise, contrast, spatial resolution, signal-to-noise ratio, and contrast-to-noise ratio. Three independent evaluators assessed the radiographs by observer-based methods of image criteria (ICS) and visual grading analysis(VGAS). Radiation doses were evaluated by the dose-area-product (DAP) of the 25 phantom radiographs. Reliability and agreement of Cobb’s angle (CA) and other radiographic parameters were evaluated on the 3DPSs and reliability on 342 LFT. Results The average noise and contrast were approximately 15-fold higher for LFT. SNR and CNR were similar. Overall, ICS and VGAS were 3-fold higher for ORT than for LFT for L3 and similar for Th6. Reliability and agreement were good for the experimental LFT, and the interclass correlation coefficient for CA was 0.852 for the clinical LFT. The average DAP and effective dose for LFT were 8-fold lower than those for ORT. Conclusion In conclusion, LFT is reliable for CA measurements and is thus useful for clinical outpatient follow-up evaluation. Even though the image quality is lower for LFT than ORT, the merits are the substantially reduced radiation and a lowered malignancy risk without compromising the measurement of Cobb’s angle, thus following the principles of ALARA.


Author(s):  
Makiko Nishikawa ◽  
Haruhiko Machida ◽  
Yuta Shimizu ◽  
Toshiya Kariyasu ◽  
Hiroyuki Morisaka ◽  
...  

Abstract Purpose In contrast-enhanced abdominopelvic CT (CE-APCT) for oncologic follow-up, ultrahigh-resolution CT (UHRCT) may improve depiction of fine lesions and low-dose scans are desirable for minimizing the potential adverse effects by ionizing radiation. We compared image quality and radiologists’ acceptance of model-based iterative (MBIR) and deep learning (DLR) reconstructions of low-dose CE-APCT by UHRCT. Methods Using our high-resolution (matrix size: 1024) and low-dose (tube voltage 100 kV; noise index: 20–40 HU) protocol, we scanned phantoms to compare the modulation transfer function and noise power spectrum between MBIR and DLR and assessed findings in 36 consecutive patients who underwent CE-APCT (noise index: 35 HU; mean CTDIvol: 4.2 ± 1.6 mGy) by UHRCT. We used paired t-test to compare objective noise and contrast-to-noise ratio (CNR) and Wilcoxon signed-rank test to compare radiologists’ subjective acceptance regarding noise, image texture and appearance, and diagnostic confidence between MBIR and DLR using our routine protocol (matrix size: 512; tube voltage: 120 kV; noise index: 15 HU) for reference. Results Phantom studies demonstrated higher spatial resolution and lower low-frequency noise by DLR than MBIR at equal doses. Clinical studies indicated significantly worse objective noise, CNR, and subjective noise by DLR than MBIR, but other subjective characteristics were better (P < 0.001 for all). Compared with the routine protocol, subjective noise was similar or better by DLR, and other subjective characteristics were similar or worse by MBIR. Conclusion Image quality, except regarding noise characteristics, and acceptance by radiologists were better by DLR than MBIR in low-dose CE-APCT by UHRCT. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document