Contribution of advanced MRI to the diagnosis of giant tumefactive perivascular spaces

2021 ◽  
pp. 028418512110472
Author(s):  
Veysel Ayyildiz ◽  
Ali Koksal ◽  
Onur Taydas ◽  
Hayri Ogul

Background Giant tumefactive perivascular spaces (PVSs) are uncommon benign cystic lesions. They can imitate cystic neoplasms. Purpose To evaluate the contribution of advanced neuro magnetic resonance imaging (MRI) techniques in the diagnosis of giant tumefactive PVSs and to further characterize these unusual cerebral lesions. Material and Methods The MRI scans of patients with tumefactive PVS diagnosed between 2010 and 2019 were retrospectively reviewed. All imaging studies included three plane conventional cerebral MRI sequences as well as precontrast 3D T1 MPRAGE, post-gadolinium 3D T1 acquisitions, sagittal plane 3D T2 SPACE, diffusion-weighted imaging, and time-of-flight (TOF) angiography. Some patients received perfusion MR, MR spectroscopy, diffusion tensor imaging (DTI), and contrast-enhanced TOF MR angiography. Results A perforating vessel was demonstrated in 16 patients (66.7%) by TOF imaging. In four patients, there were intracystic vascular collaterals on contrast-enhanced TOF MR angiography. Septal blooming was observed in four patients in susceptibility-weighted imaging. On perfusion MR, central hyperperfusion was observed in four patients, and peripheral hyperperfusion was observed in one patient. On MR spectroscopy, choline increase was observed in two patients, and there was a lactate peak in three patients, and both a choline increase and lactate peak in one patient. On DTI, there was fiber distortion in five patients and fiber deformation in one patient. Conclusion Advanced MRI techniques and 3D volumetric high-resolution MRI sequences can provide a valuable contribution to the diagnosis and can be successfully used in the management of these lesions.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi20-vi21
Author(s):  
Pamela Jackson ◽  
Minjee Kim ◽  
Andrea Hawkins-Daarud ◽  
Kyle Singleton ◽  
Afroz Mohammad ◽  
...  

Abstract Choosing effective chemotherapies for intravenous delivery to brain tumors is challenging, especially given the protective nature of the blood brain barrier (BBB). Connecting drug distribution to non-invasive, pre-surgical magnetic resonance imaging (MRI) could allow for predictive insight into drug distribution. In a previous study, we found that T2Gd images were predictive of a low BBB penetrant drug (Cefazolin), and FLAIR images were predictive of a high BBB penetrant drug (Levetiracetam). While these results are promising, we further seek to explore how advanced MRI sequences might inform image-based models of drug distribution. Prior to surgery, we acquired advanced dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) MRI sequences for eight brain tumor patients (7 gliomas and 1 metastatic adenocarcinoma) in addition to the anatomic MRIs. All resulting quantitative maps and acquired images were co-registered. Prior to incision, patients received injections of cefazolin and levetiracetam. Next, multiple blood samples and biopsies were collected during surgery. Biopsies and plasma samples were analyzed for drug concentration using liquid chromatography mass spectrometry (LCMS), and biopsy drug levels were reported as Brain-Plasma Ratio (BPR). Mean image intensity was extracted from a 15x15 voxel window surrounding the biopsy location. We performed linear regression analyses to determine which combination of images were predictive of BPR. We found that considering quantitative imaging improved our initial ability to predict BPR for both drugs. For cefazolin, the third diffusion tensor eigenvalue (L3) map was significantly correlated with BPR (p< 0.001, R2= 0.36). For levetiracetam, the best model consisted of a combination of images and maps with the L3 map and the isotropic diffusion map (P) being the most influential (p= 0.001, R2= 0.63). Advanced MRI-based modeling is a promising tool for forecasting drug distribution in brain tumors and could be of great importance for understanding efficacy and selecting therapeutic strategies.


VASA ◽  
2010 ◽  
Vol 39 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Schubert

The subclavian steal effect indicates atherosclerotic disease of the supraaortic vessels but rarely causes cerebrovascular events in itself. Noninvasive imaging providing detailed anatomic as well as hemodynamic information would therefore be desirable. From a group of 25 consecutive patients referred for MR angiography, four with absent or highly attenuated signal in one of the vertebral arteries on 3D multislab time-of-flight MR angiography were selected to undergo 3D time-resolved contrast-enhanced MR angiography. The time-resolved 3D contrast series (source images and MIPs) were evaluated visually and by graphic analysis of time-intensity curves derived from the respective V1 and V3 segments of both vertebral arteries on the source images. In two cases with high-grade proximal left subclavian stenosis, time-resolved 3D ce-MRA was able to visualise retrograde contrast filling of the left VA. There was a marked delay in time-to-peak between the left and right V1 segments in one case and a shallower slope of enhancement in another. In the other two cases, there was complete or collateralised segmental occlusion of the VAs.


VASA ◽  
2009 ◽  
Vol 38 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Schubert

We describe a case of aortic coarctation at the level of the infrarenal abdominal aorta which is encountered in less than six individuals in one million. In contrast to aortic narrowing above or including the renal arteries, this seems to be a relatively benign anomaly without systemic hypertension or impaired renal function. For the first time in this type of anomaly, contrast-enhanced MR angiography (ce-MRA) on a multi-receiver channel MR system, with an 8-channel phased array coil and parallel imaging was used. Ce-MRA displayed a tortuous, narrowed aortic segment that was found to be associated with mesenteric artery stenosis and compression of the orthotopic left renal vein, also known as the nutcracker phenomenon. All major aortic branches could be depicted using 3D surface-shaded displays and subvolume maximum intensity projections (MIPs). Collateral vessels of the abdominal wall were identified using whole-volume MIPs. Since the majority of aortic malformations are diagnosed at a younger age, and many suffer from renal insufficiency, we conclude that ce-MRA will eventually place conventional DSA as the modality of choice in malformations of the abdominal aorta.


1999 ◽  
Vol 41 (4) ◽  
pp. 705
Author(s):  
Mi Ra Seo ◽  
Moon Gyu Lee ◽  
Hyuk Jin Hong ◽  
Hyun Kwon Ha ◽  
Pyo Nyun Kim ◽  
...  

2004 ◽  
Vol 51 (6) ◽  
pp. 609
Author(s):  
Young Sun Lee ◽  
Gong Yong Jin ◽  
Young Min Han ◽  
Sang Yong Lee ◽  
Hak Hun Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document