scholarly journals Enumeration of viable CD34+ cells in cord blood using a novel stem cell enumeration kit

2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110553
Author(s):  
Sheng Huang ◽  
Kangli Xu ◽  
Shanshan Xu ◽  
Shijun Yu ◽  
Yan Miao ◽  
...  

Objective To assess the detection performance of the hematopoietic stem cell enumeration kit developed by BD Biosciences. Methods Cord blood samples were prepared using a hematopoietic stem cell enumeration kit developed by BD Biosciences and Stem-Kit reagents from Beckman Coulter. CD34+ cells were enumerated using a BD FACSCanto instrument and FACSDiva software. Results A total of 519 samples were analyzed in this study. The hematopoietic stem cell enumeration kit developed by BD Biosciences yielded absolute counts of CD34-positive cells that were on average 8.7% lower than Beckman Coulter Stem-Kit reagents (range: −5.7% to−14.7%). The BD Biosciences kit yielded relative counts that were on average 9.9% higher compared with Beckman Coulter Stem-Kit reagents (range: −2.1% to +13.8%). The intraclass correlation coefficients for absolute and relative counts of CD34-positive cells were 0.9967 (95% confidence interval [CI]: 0.9961–0.9972) and 0.9512 (95% CI: 0.9423–0.9587) for the BD Biosciences and Beckman Coulter kits, respectively. Conclusions The hematopoietic stem cell enumeration kit developed by BD Biosciences can be used to enumerate CD34-positive stem cells from cord blood samples.

2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4363-4363
Author(s):  
Alexandre Janel ◽  
Nathalie Boiret-Dupré ◽  
Juliette Berger ◽  
Céline Bourgne ◽  
Richard Lemal ◽  
...  

Abstract Hematopoietic stem cell (HSC) function is critical in maintaining hematopoiesis continuously throughout the lifespan of an organism and any change in their ability to self-renew and/or to differentiate into blood cell lineages induces severe diseases. Postnatally, HSC are mainly located in bone marrow where their stem cell fate is regulated through a complex network of local influences, thought to be concentrated in the bone marrow (BM) niche. Despite more than 30 years of research, the precise location of the HSC niche in human BM remains unclear because most observations were obtained from mice models. BM harvesting collects macroscopic coherent tissue aggregates in a cell suspension variably diluted with blood. The qualitative interest of these tissue aggregates, termed hematons, was already reported (first by I. Blaszek's group (Blaszek et al., 1988, 1990) and by our group (Boiret et al., 2003)) yet they remain largely unknown. Should hematons really be seen as elementary BM units, they must accommodate hematopoietic niches and must be a complete ex vivo surrogate of BM tissue. In this study, we analyzed hematons as single tissue structures. Biological samples were collected from i) healthy donor bone marrow (n= 8); ii) either biological samples collected for routine analysis by selecting bone marrow with normal analysis results (n=5); or iii) from spongy bone collected from the femoral head during hip arthroplasty (n=4). After isolation of hematons, we worked at single level, we used immunohistochemistry techniques, scanning electronic microscopy, confocal microscopy, flow cytometry and cell culture. Each hematon constitutes a miniature BM structure organized in lobular form around the vascular tree. Hematons are organized structures, supported by a network of cells with numerous cytoplasmic expansions associated with an amorphous structure corresponding to the extracellular matrix. Most of the adipocytes are located on the periphery, and hematopoietic cells can be observed as retained within the mesenchymal network. Although there is a degree of inter-donor variability in the cellular contents of hematons (on average 73 +/- 10 x103 cells per hematon), we observed precursors of all cell lines in each structure. We detected a higher frequency of CD34+ cells than in filtered bone marrow, representing on average 3% and 1% respectively (p<0.01). Also, each hematon contains CFU-GM, BFU-E, CFU-Mk and CFU-F cells. Mesenchymal cells are located mainly on the periphery and seem to participate in supporting the structure. The majority of mesenchymal cells isolated from hematons (21/24) sustain in vitro hematopoiesis. Interestingly, more than 90% of the hematons studied contained LTC-ICs. Furthermore, when studied using confocal microscopy, a co-localization of CD34+ cells with STRO1+ mesenchymal cells was frequently observed (75% under 10 µm of the nearest STRO-1+ cell, association statistically highly significant; p <1.10-16). These results indicate the presence of one or several stem cell niches housing highly primitive progenitor cells. We are confirming these in vitro data with an in vivo xenotransplantation model. These structures represent the elementary functional units of adult hematopoietic tissue and are a particularly attractive model for studying homeostasis of the BM niche and the pathological changes occurring during disease. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document