Distribution and Chemotherapeutic Activity of Daunomycin and Adriamycin in Spontaneous Mammary Carcinoma of Mice

1972 ◽  
Vol 58 (4) ◽  
pp. 213-218 ◽  
Author(s):  
Luigi Lenaz ◽  
Giovanni Di Fronzo

The distribution of tritiaded daunomycin and adriamycin have been studied in inbred C3H mice hearing spontaneous mammary carcinoma. It was found that adriamycin administration results in higher blood and tissue levels than daunomycin and that significant levels may be maintained in the tumor as much as a week after 3 injections of adriamycin 2.5 mg/kg at 12-intervals. Tumor hearing animals were treated with daunomycin or adriamycin daily or on alternate days. Daunomycin proved to be active only when administered daily, while adriamycin activity is marked even if administered every other day. Adriamycin activity is particularly marked if administered according to an intermittent schedule (weekly cycle of 3 injections every 12 h); on this schedule results the toxicity, as determined from weight loss and survival time of treated animals, is also somewhat lower.

2019 ◽  
Vol 7 ◽  
pp. 205031211984976 ◽  
Author(s):  
Temesgen Bihonegn ◽  
Mirutse Giday ◽  
Getnet Yimer ◽  
Abebe Animut ◽  
Mekonnen Sisay

Background: Vernonia amygdalina Del. (Asteraceae) is reported to be traditionally used for the treatment of malaria. Based on folkloric repute of this plant in Ethiopian traditional medicine and crude extract-based ethnopharmacological studies conducted in few countries, this study was undertaken to evaluate the in vivo antimalarial activity of 80% methanol extract and its solvent fractions of the leaves of V. amygdalina in mice infected with Plasmodium berghei. Methods: A 4-day suppressive test was conducted on mice infected with P. berghei to find out antimalarial effect of chloroform, butanol and aqueous fractions obtained from the 80% methanol crude extract. In all the activity tests, mice were randomly assigned in five groups (three tests and two controls) of six animals in each and received respective treatments. Data were analyzed using one way analysis of variance followed by Tukey’s post hoc test for multiple comparisons. Results: Acute oral toxicity test showed that all solvent fractions of the leaves of V. amygdalina revealed neither mortality nor overt signs of toxicity up to 2000 mg/kg. This study indicated that the percentage parasitemia suppression of 80% methanol extract was 32.47% (±2.65), 35.40% (±3.14) and 37.67% (±2.50) at 200, 400 and 600 mg/kg, respectively. All doses of the 80% methanol extract of V. amygdalina prolonged survival time and prevented weight loss and packed cell volume reduction in infected mice. All doses of chloroform and butanol fractions significantly suppressed parasitemia (p < 0.05), increased survival time (p < 0.05) compared to negative control and exhibited a significant reduction in rectal temperature (p < 0.05). All solvent fractions significantly prevented weight loss (p < 0.05) at all tested doses. The 80% methanol extract and chloroform and butanol fractions significantly (p < 0.05) prevented further reduction in rectal temperature of P. berghei-infected mice at all doses. Conclusion: The results of this study indicated that 80% methanol extract and solvent fractions of the leaves of V. amygdalina demonstrated promising antimalarial activity. The study corroborated the folklore use of this plant for the treatment of malaria in ethnomedicine in Ethiopia.


1954 ◽  
Vol 99 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Edward H. Kass ◽  
Marguerite M. Lundgren ◽  
Maxwell Finland

Cortisone acetate, hydrocortisone, and hydrocortisone acetate depress the resistance of mice to pneumococcal and influenza viral infections, although hydrocortisone acetate is somewhat less effective than the free alcohol, when given subcutaneously. Pituitary adrenocorticotropin, even in highly purified form and in oil and beeswax, does not significantly alter the resistance of mice to these experimental infections, even when given in doses which may cause profound eosinopenia, lymphopenia, and weight loss, and which are at the limit of tolerance of the animals. Corticosterone depresses resistance to pneumococcal infections significantly, but fails to alter resistance to influenza viral infections. The findings suggest that murine adrenals may produce one of the known adrenal steroids such as corticosterone along with another steroid, or may produce a steroid other than cortisone, hydrocortisone, or corticosterone. When resistance is decreased by adrenal steroids, survival time is invariably shortened, and the effect of the steroid hormones is frequently demonstrable within the 1st day after infection with pneumococci, making it unlikely that the depression of resistance that is seen is primarily due to depression of antibody formation. A single dose of 5 mg. of cortisone may cause depression of resistance and may decrease the survival time for 3 to 6 days afterward. Growth hormone (somatotropic hormone) in highly purified form, and in the doses used, did not overcome the weight loss induced by cortisone, but the animals treated with growth hormone and cortisone regained their lost weight more rapidly than those receiving cortisone alone. Growth hormone alone caused a slight increase in the rate of gain in weight over controls. Growth hormone alone did not increase resistance to infection, and did not increase the survival time, in mice infected with either pneumococci or influenza virus. Growth hormone in various dosages failed to overcome the effect of cortisone in depressing resistance to these infections. Cortisone, hydrocortisone, corticosterone, and corticotropin did not alter significantly the titers of influenza virus attained in the murine lungs during the first 2 days after infection, but cortisone and hydrocortisone markedly delayed the rate at which virus titers declined during the subsequent 6 days. Corticosterone and corticotropin delayed the rate at which the titers declined but slightly, and growth hormone had no apparent effect, as compared with controls. Growth hormone did not overcome the effect of cortisone and hydrocortisone on viral titers. No detectable antibody was found as late as 6 days after infection, in controls or in hormone-treated animals.


2007 ◽  
Vol 9 (5) ◽  
pp. 411-417 ◽  
Author(s):  
Jennifer L Baez ◽  
Kathryn E. Michel ◽  
Karin Sorenmo ◽  
Frances S Shofer

The objectives of this study were to prospectively identify and characterize weight loss and changes in body condition in feline cancer patients and to investigate the prognostic significance of these findings. Fifty-seven cats with neoplasia were evaluated. Body condition was assessed with a nine-point scoring system (BCS) and multiple sites were assessed for muscle and fat mass using four-point scoring systems. Feline cancer patients had a mean BCS of 4.4±2.1 kg (1=cachectic, 5=optimal, 9=obese). Fat mass was reduced in both sites assessed in 60% of the patients. Muscle mass was reduced at all three sites assessed in 91% of the patients. Feline cancer patients having a BCS <5 had a median survival time (MST) of 3.3 months compared to that of 16.7 months for cats with a BCS of ≥5 ( P=0.008).


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Gebrehiwot Kiros Gebremariam ◽  
Haile Kassahun Desta ◽  
Tekleab Teka Teklehaimanot ◽  
Tsgab Gebrecherkos Girmay

Background. Malaria is a major health concern in the world in general and developing countries in particular. Nowadays, the control of malaria has ended up steadily more complex due to the spread of drug-resistant parasites. Medicinal plants are the verifiable source of compelling antimalarial drugs. The present study was aimed to assess the in vivo antimalarial activity of leaf latex of A. melanacantha against Plasmodium berghei in mice. Methods. Acute oral toxicity study of the leaf latex was assessed in mice up to a dose of 2,000 mg/kg. A four-day suppressive model was utilized to investigate the antimalarial activity of the plant. Three extract doses, 100, 200, and 400 mg/kg/day, doses of the plant leaf latex, chloroquine, 10 mg/kg (positive control) and distilled water, and 10 mL/kg (negative control) were administered to mice. Percent parasitemia suppression, packed cell volume, mean survival time, body weight, and rectal body temperature were used to determine antimalarial activity. Results. Test groups treated with 100, 200, and 400 mg/kg of the latex showed a significant parasitemia suppression in dose dependent manner compared to the negative control with an IC50 of 22.63 mg/ml. Mice treated with 100, 200, and 400 mg/kg have shown parasitemia suppression of 14.86%, 29%, and 43.2%, respectively. The chemosuppression was significant ( P < 0.05 ) at all doses compared to the negative control. Similarly, mice treated with 100 mg/kg, 200 mg/kg, and 400 mg/kg have shown a significant survival time compared to the negative control. At the same time, weight loss reduction was observed within the test groups treated with 100 mg/kg and 200 mg/kg of the latex while the test groups treated with 400 mg/kg had showed almost no weight loss reduction. The latex also reversed the PCV reduction significantly ( P < 0.05 ) at 200 mg/kg and 400 mg/kg doses and prevented rectal temperature dropping significantly ( P < 0.05 ) at all doses. Conclusion. The leaf latex of A. melanacantha has shown significant antimalarial activity against P. berghei in mice supporting the genuine traditional antimalarial usage of the plant.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Sakaewan Ounjaijean ◽  
Manas Kotepui ◽  
Voravuth Somsak

Plant species of the genus Tinospora (Menispermaceae) possess several pharmacological properties, and T. crispa has been reported to have antimalarial activity. T. baenzigeri (Chingcha Chalee) is a rich source of terpenes and quinoline alkaloids; however, it still has not yet been investigated the antimalarial activity of this plant extract. Hence, this study was aimed to evaluate the antimalarial activity of T. baenzigeri stem extract against Plasmodium berghei-infected mice. The aqueous crude extract of T. baenzigeri stem was prepared using a microwave-assisted method and tested for acute toxicity in mice. For evaluating the antimalarial activity in vivo, the standard 4-day test was carried out using groups of ICR mice infected with P. berghei ANKA administered orally by gavage with the extract (100, 250, and 500 mg/kg) for 4 consecutive days. Parasitemia, body weight, packed cell volume, and mean survival time were then measured. It was found that the aqueous crude extract of T. baenzigeri stem did not exhibit any sign of toxicity up to the dose of 2,000 mg/kg. The extract significantly (P<0.01) inhibited parasitemia in a dose-dependent manner, with 22.02%, 50.81%, and 74.95% inhibition. Moreover, the marked prevention of body weight loss and packed cell volume reduction was observed at doses of 100, 250, and 500 mg/kg of extract-treated mice. Additionally, the extract prolonged the mean survival time of P. berghei-infected mice, compared to the untreated group. In conclusion, the aqueous crude extract of T. baenzigeri stem has demonstrated potent antimalarial activity against P. berghei-infected mice with prolonged mean survival time and prevention of body weight loss and packed cell volume reduction.


Sign in / Sign up

Export Citation Format

Share Document