Correlation between the Presence of Natural Antitumor Antibodies and Activation of Mulv Endogenous Virus in Balb/C Mice

1981 ◽  
Vol 67 (4) ◽  
pp. 283-292 ◽  
Author(s):  
Sylvie Ménard ◽  
Maria I. Colnaghi ◽  
Elda Tagliabile

Individual 3-month-old or 12-month-old BALB/c mice, as well as 5-month-old nu/nu or nu/ + BALB/c mice, showed a direct correlation between the serum level of natural antitumor cytotoxic antibodies and the capacity of spleen cells to infect SC-1 cells permissive for murine ecotropic viruses. Pooled or individual sera from 3-month-old BALB/c mice, negative for the presence of natural antitumor cytotoxic antibodies and whose spleen cells were unable to infect the SC-1 cells, were negative both for SC-1 cells and SC-1 cells infected by MuLV. On the contrary, pooled or individual sera from 15-month-old BALB/c mice, positive for the presence of natural antitumor antibodies and with infecting spleen cells, were cytotoxic for infected SC-1 cells but not for the uninfected ones. The infection of SC-1 cells by MuLV could be inhibited by 3-month-old spleen cells, and this effect was suppressed by depriving the inhibiting spleen cells of T cells by means of an anti-Thy-1 antibody plus complement. The cells with infectious capacity did not belong to the T-cell compartment, as demonstrated by the lack of infection after passing the infecting spleen cells through an anti-Ig column, whereas T-deprivation did not modify the infectious capacity. A natural anti-gp70 monoclonal antibody, which exerted a complement-dependent cytotoxic effect on tumor cells, stronghly inhibited the infection of the permissive SC-1 cells by MuLV.

1983 ◽  
Vol 158 (4) ◽  
pp. 1307-1318 ◽  
Author(s):  
P B Hausman ◽  
C E Moody ◽  
J B Innes ◽  
J J Gibbons ◽  
M E Weksler

Monoclonal antibodies with specificity for autoreactive murine T cells have been developed. These antibodies inhibit proliferative response of splenic T cells activated by syngeneic spleen cells. These antibodies have no effect on the proliferative response of T cells activated by allogeneic spleen cells or PHA. The number of splenic T cells that react with these monoclonal antibodies is comparable in several normal mouse strains.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964 ◽  
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

Abstract We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 724-724
Author(s):  
Fuliang Chu ◽  
Myriam Foglietta ◽  
Hong Qin ◽  
Rakesh Sharma ◽  
Qing Yi ◽  
...  

Abstract Abstract 724 Background: Programmed death (PD)–1 is an inhibitory receptor that impairs the function of activated T-cells and natural killer (NK) cells when engaged by its ligands PD-L1 or PD-L2. We have previously demonstrated that PD-1 is markedly up-regulated in intratumoral and peripheral blood CD4+ and CD8+ T cells in patients with follicular lymphoma (FL), a finding associated with impaired T-cell function, suggesting that PD-1 blockade may improve FL immune control. CT-011, a humanized anti PD-1 monoclonal antibody, was previously studied in a phase I clinical trial in patients with advanced hematological malignancies. CT-011 was well tolerated and induced sustained elevations of CD4+ T cells in the peripheral blood. More importantly, apparent clinical benefit was observed in six patients, including one patient with FL who had large tumor masses that achieved a durable complete remission lasting >14 months. Here, we studied the in vitro and in vivo effects of CT-011 on T-cell and/or NK-cell immune responses against human B-cell lymphoma and the hypothesis that CT-011 may improve tumor control when combined with rituximab, a chimeric anti-CD20 monoclonal antibody for the treatment of human FL. Materials and Methods: To determine the effects of CT-011 on antitumor T cells, intratumoral T cells were isolated from primary FL tumor samples, and cultured with or without autologous tumor cells in the presence or absence of CT-011 or isotype control antibody (50 μg/ml each) for 5 days, and tested for proliferation by 3H thymidine incorporation assay. To determine the effects of CT-011 on NK cells, peripheral blood mononuclear cells (PBMCs) derived from normal donors or patients with FL were cultured in the presence or absence of CT-011 (50 μg/ml) with or without IL-2 for 96 hours and analyzed for expression of various activating receptors including CD16, CD32, CD64, Fas ligand, NKG2D, NKp30, NKp44, and NKp46. The in vivo effects of CT-011 were tested in two B-cell lymphoma xenograft models. Ramos and RL lymphoma tumor cells were injected subcutaneously into nude and SCID mice, respectively, and CT-011 (10 μg/mouse) was injected weekly with or without rituximab starting approximately 7–10 days after tumor inoculation. Results: We observed that CT-011 significantly increased the proliferation of intratumoral T cells in response to autologous tumor cells compared with isotype control antibody. Treatment with CT-011 enhanced the expression of Fas ligand, CD32, CD64, and NKp30 on human NK cells in the presence of IL-2 as compared with PBMCs treated with IL-2 alone or media control. In the RL lymphoma xenograft model in SCID mice, treatment with CT-011 significantly delayed tumor growth (P≤0.05) and improved survival (P≤0.01) compared with control mice injected with saline. In a Ramos lymphoma xenograft model in nude mice, treatment with CT-011 and rituximab eradicated established tumors in a significant proportion of mice (P≤0.05) and markedly improved survival compared with rituximab alone or saline. Conclusions: Taken together, these studies suggest that blockade of PD-1 with CT-011 enhances the function of anti-tumor T-cells and augments the expression of activating receptors on NK cells. Treatment with CT-011 led to improved tumor control against human B-cell lymphoma in xenograft models and the combined use of CT-011 and rituximab was more effective that rituximab alone. These results provide the rationale to test the combination of CT-011 with rituximab in patients with B-cell lymphoma, given that the combination is likely to be complementary and may even be synergistic, leading to enhanced clinical efficacy without increasing toxicity. The development of such approaches that activate both the innate (NK-cells) and adaptive (T-cells) immune systems is likely to minimize the emergence of immune escape variants and improve clinical outcome in patients with lymphoma. A clinical trial evaluating CT-011 in combination with rituximab is planned in patients with relapsed FL. Disclosures: Rodionov: Cure Tech Ltd.: Employment. Rotem-Yehudar:Cure Tech Ltd.: Employment.


2015 ◽  
Vol 79 (6) ◽  
pp. 896-906 ◽  
Author(s):  
Lidia Patricia Jaramillo-Quintero ◽  
Arturo Contis Montes de Oca ◽  
Andrés Romero Rojas ◽  
Saúl Rojas-Hernández ◽  
Rafael Campos-Rodríguez ◽  
...  

1979 ◽  
Vol 150 (4) ◽  
pp. 1001-1007 ◽  
Author(s):  
J Forman ◽  
J W Streilein

B10.A animals were rendered tolerant to B10.M spleen cells by injection of (B10.A X B10.M)F1 cells into neonates. Adult animals accepted B10.M skin grafts and failed to generate cytotoxic effector cells in vitro against B10.M H-2 antigens. In vivo inoculation of tolerant animals with A.CA spleen cells, followed by in vitro challenge with similar cells, resulted in the generation of cytotoxic effector cells that had specificity for the A strain minor histocompatibility (H)-antigens in the context of the H-2f haplotype. If these animals were boosted in vitro with A strain spleen cells, cross-priming could be demonstrated, whereby the cytotoxic effect was restricted by the H-2a haplotype. These data indicate that at least two sets of T cells co-exist in tolerant animals, one capable of recognizing antigens in the context of the host H-2 haplotype, and the other able to recognize antigens in the context of the tolerated H-2-allogeneic haplotype. Because tolerant animals inoculated with A-strain spleen cells in vivo and boosted in vitro with A.CA spleen cells failed to generate a cytotoxic effect against A.CA, it is unlikely that minor H-antigens need to be processed by host lymphoreticular cells.


1985 ◽  
Vol 161 (5) ◽  
pp. 1122-1134 ◽  
Author(s):  
P D Greenberg ◽  
D E Kern ◽  
M A Cheever

The ability of noncytolytic Lyt-1+,2- T cells immune to FBL-3 leukemia to effect eradication of disseminated FBL-3 was studied. Adult thymectomized, irradiated, and T-depleted bone marrow-reconstituted (ATXBM) B6 hosts were cured of disseminated FBL-3 by treatment with 180 mg/kg cyclophosphamide (CY) and adoptively transferred Lyt-1+,2- T cells obtained from congenic B6/Thy-1.1 donors immune to FBL-3. Analysis of the T cell compartment of ATXBM hosts treated and rendered tumor-free by this therapy revealed that the only T cells present in the mice were donor-derived Lyt-1+,2- T cells. In vitro stimulation of these T cells with FBL-3 tumor cells, which express class I but no class II major histocompatibility complex antigens, induced lymphokine secretion, but did not result in the generation of cytotoxic T lymphocytes (CTL). Thus, in a setting in which mice lack Lyt-2+ T cells, and in which no CTL of either host or donor origin could be detected, immune Lyt-1+,2- T cells, in conjunction with CY, mediated eradication of a disseminated leukemia. The results suggest that delayed-type hypersensitivity responses induced by immune T cells represent a potentially useful effector mechanism for in vivo elimination of disseminated tumor cells.


1977 ◽  
Vol 146 (2) ◽  
pp. 600-605 ◽  
Author(s):  
J Forman

Spleen cells sensitized against trinitrophenyl (TNP)-modified stimulator cells displayed a cytotoxic effect against syngeneic TNP-modified but not dinitrophenyl (DNP)-modified target cells. The same finding was observed in the opposite direction; that is, effector cells sensitized against DNP-modified stimulator cells did not cross kill TNP-modified targets. The specificity of the anti-TNP effector cells was confirmed in a cold target competition assay. Presensitization in vivo with hapten-modified cells followed by rechallenge and testing in vitro did not alter the specificity of the response between the haptens. These data indicate that the receptor(s) on the cytotoxic T cell can distinguish between two closely related haptenic molecules.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


Sign in / Sign up

Export Citation Format

Share Document