Cerebral Ovine Herpesvirus 2 Infection of Cattle Is Associated With a Variable Neuropathological Phenotype

2020 ◽  
pp. 030098582097049
Author(s):  
Melanie M. Hierweger ◽  
Céline L. Boujon ◽  
Ronja V. Kauer ◽  
Mireille Meylan ◽  
Torsten Seuberlich ◽  
...  

Cross-species infection with ovine herpesvirus 2 (OvHV-2) in cattle causes malignant catarrhal fever (MCF). MCF may involve the central nervous system (CNS) with necrotizing arteritis and/or vasculitis described to be unique to MCF and discriminatory compared to other viral CNS infections. However, a systematic histopathological characterization of the neural form of MCF in cattle is lacking. We examined medulla oblongata ( n = 9) or the entire brain ( n = 9) of 18 cattle in which OvHV-2 was identified by quantitative polymerase chain reaction (qPCR), in order to pinpoint potential variations in neuropathology. In 2/18 animals (11%) no lesions were identified, while 16/18 cattle (89%) had brain lesions of varying severity. Presence and quantities of OvHV-2 nucleic acid were determined by in situ hybridization and qPCR, respectively, and were related to the severity of lesions. Fifteen of 18 animals (83%) showed vasculitis, which was mainly of the lymphohistiocytic type, while pathognomonic necrotizing arteritis was only rarely present. Neuroparenchymal lesions included gliosis and/or neuronal changes in 7/16 brains with lesions (44%). The number of CD3+ lymphocytes was highest in animals with simultaneous vascular and neuroparenchymal lesions and high viral genome load. In one animal, OvHV-2 was exclusively observed in CD3+ lymphocytes but not in neurons or microglia. In conclusion, the neuropathological phenotype of bovine MCF in the brain was variable. In some cases, lesions mimicked neurotropic viral encephalitis, while pathognomonic necrotizing arteritis was not a consistent feature of neural MCF. Therefore, molecular detection of OvHV-2 is warranted in the presence of nonsuppurative encephalitis and in the absence of necrotizing arteritis.

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93631 ◽  
Author(s):  
Lai-yu Kwok ◽  
Jiachao Zhang ◽  
Zhuang Guo ◽  
Qimu Gesudu ◽  
Yi Zheng ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 336-341 ◽  
Author(s):  
Ana Carolina de Moura ◽  
Virgínia Meneghini Lazzari ◽  
Grasiela Agnes ◽  
Silvana Almeida ◽  
Márcia Giovenardi ◽  
...  

Objective A growing number of published articles report the expression of specific genes with different behavior patterns in rats. The levels of messenger ribonucleic acid transcripts are usually analyzed by reverse transcription followed by polymerase chain reaction and quantified after normalization with an internal control or reference gene (housekeeping gene). Nevertheless, housekeeping genes exhibit different expression in the central nervous system, depending on the physiological conditions and the area of the brain to be studied. The choice of a good internal control gene is essential for obtaining reliable results. This study evaluated the expression of three housekeeping genes (beta-actin, cyclophilin A, and ubiquitin C) in different areas of the central nervous system in rats (olfactory bulb, hippocampus, striatum, and prefrontal cortex). Methods Wistar rats (virgin females, n=6) during the diestrum period were used. Total ribonucleic acid was extracted from each region of the brain; the complementary deoxyribonucleic acid was synthesized by reverse transcription and amplified by real-time quantitative polymerase chain reaction using SYBR™ Green and primers specific for each one of the reference genes. The stability of the expression was determined using NormFinder. Results Beta-actin was the most stable gene in the hippocampus and striatum, while cyclophilin A and ubiquitin C showed greater stability in the prefrontal cortex and the olfactory bulb, respectively. Conclusion Based on our study, further studies of gene expression using rats as animal models should take into consideration these results when choosing a reliable internal control gene.


2008 ◽  
Vol 58 (2) ◽  
pp. 359-365 ◽  
Author(s):  
Vladimir Baytshtok ◽  
Sungpyo Kim ◽  
Ran Yu ◽  
Hongkeun Park ◽  
Kartik Chandran

Although methanol is a widely employed carbon source for denitrification, relatively little is known on the abundance and diversity of methylotrophic bacteria in activated sludge. The primary aim of this study was to specifically identify bacteria that metabolized methanol in a sequencing batch denitrifying reactor (SBDR), using a novel technique, stable isotope probing (SIP) of 13C labeled DNA. A secondary aim was to quantitatively track dominant methylotrophic bacteria in the SBDR exposed to different terminal electron acceptors. SIP enabled 13C 16S rDNA clone libraries revealed that SBDR methylotrophic populations were related to Methyloversatilis spp. and Hyphomicrobium spp. Based on newly developed quantitative polymerase chain reaction (qPCR) assays, Hyphomicrobium spp. were more abundant than Methyloversatilis spp. throughout the period of SBDR operation. The relative population abundance was stable despite a shift in electron acceptor from nitrate to nitrite (keeping the same methanol dose). However, the shift to nitrite resulted in a significant decrease in denitrification biokinetics on both nitrate and nitrite.


Sign in / Sign up

Export Citation Format

Share Document