scholarly journals Spontaneous Mesangioproliferative Glomerulonephritis in Pigtailed Macaques (Macaca nemestrina)

1981 ◽  
Vol 18 (6_suppl) ◽  
pp. 82-88 ◽  
Author(s):  
J. T. Boyce ◽  
W. E. Giddens ◽  
R. Seifert

Mesangioproliferative glomerulonephritis was found in 28 of 113 pigtailed macaques (Macaca nemestrina) that died in 1977. In five it was considered severe enough to cause significant renal dysfunction; in two of these it was the cause of death. The basic lesion was a proliferation of mesangial cells and deposition of mesangial matrix in the mesangial stalk, resulting in various degrees of stalk expansion and increased lobulation of the glomerular tuft. Preliminary immunofluorescence and ultrastructural studies suggest the pathogenesis of the lesion may involve deposition of antigen-IgM immune complexes in the mesangial region.

2021 ◽  
Vol 22 (13) ◽  
pp. 7230
Author(s):  
Jung-Joo Yoon ◽  
Ji-Hun Park ◽  
Yun-Jung Lee ◽  
Hye-Yoom Kim ◽  
Byung-Hyuk Han ◽  
...  

Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mortality. The major pathological alterations of DN include mesangial expansion, extracellular matrix alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and antihypertensive. However, to the best of the authors’ knowledge, the effects of the ethanolic extract from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was administrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically, ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well as the inhibition of nephritis and fibrosis in DN.


1997 ◽  
Vol 8 (11) ◽  
pp. 1668-1678
Author(s):  
K Nishimoto ◽  
H Shiiki ◽  
T Nishino ◽  
H Uyama ◽  
M Iwano ◽  
...  

The present study was performed to assess the pathogenetic role of glomerular hypertrophy in patients with primary focal segmental glomerulosclerosis (FSGS). We studied 14 patients with FSGS by morphometry. In seven patients, minimal change nephrotic syndrome (MCNS) was diagnosed on the first renal biopsy, but FSGS was diagnosed on the second biopsy (MCNS-FSGS group). Seven other patients with FSGS on the first biopsy underwent second biopsies while in remission (FSGS-R group). Biopsy results were compared with biopsies from 10 patients with MCNS and seven control subjects. Nonsclerotic glomeruli were examined. The mean glomerular tuft area, whole glomerular area, and number of mesangial cells were significantly increased in both biopsies from the MCNS-FSGS group and in the first biopsies obtained during the nephrotic stage of the FSGS-R group, compared with control subjects and patients with MCNS. Biopsies from FSGS patients in remission showed that the mean glomerular tuft area and number of mesangial cells were significantly decreased. The fractional extracellular matrix area (extracellular matrix area/glomerular tuft area) and mesangial cell density (mesangial cell number/glomerular tuft area) in FSGS during both nephrotic and remission stages were the same as those in control subjects and patients with MCNS. The present study suggests that glomerular hypertrophy precedes the development of glomerulosclerosis in FSGS and is reversible when patients are in remission. These features support the pathogenetic importance of glomerular hypertrophy in patients with primary FSGS.


1979 ◽  
Vol 149 (1) ◽  
pp. 127-136 ◽  
Author(s):  
G E Striker ◽  
M Mannik ◽  
M Y Tung

Phagocytosis of intravenously administered immune complexes by cells in the mesangium was investigated. The model used was that of exchange marrow transplantation between Chediak-Higashi (CH) mice and syngeneic partners after X-irradiation. This model was chosen since marrow-derived macrophages could be differentiated from resident mesangial cells by the presence of the characteristic giant lysosomes in phagocytic cells of the CH mice. Injected immune complexes were cleared normally and localized in the glomerular mesangium in CH or C57BL/6J mice receiving either C57BL/6J or CH marrow. C57BL/6J mice with CH marrow injected with immune complexes prepared with reduced and alkylated antibodies accumulated many cells within the mesangium that contained both giant lysosomes and electron dense deposits. Deposits were not found in cells with subplasmalemmal microfilaments and perpheral dense bodies. Conversely, the cells in the mesangium of CH mice with C57BL/6J marrow that contained electron dense deposits were devoid of giant lysosomes. Based on these observations, we concluded that (a) marrow-derived monocytes contribute to mesangial hypercellularity after deposition of immune complexes and (b) phagocytosis of immune complexes localized in the glomerular mesangium was by marrow-derived monocytes rather than by mesangial cells.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Eugene Lin ◽  
Maria Luisa S Sequeira Lopez ◽  
Roberto A Gomez

Proper assembly of the renal vasculature is essential for post-natal life, and alterations to the renal vasculature are at the root of many types of cardiovascular disease. However, the mechanisms underlying the establishment, assembly and maintenance of the renal blood vessels are poorly understood. We have identified a population of renal stromal cells (marked by their expression of the transcription factor Foxd1) that differentiate to form the mural cells of the kidney arterial tree (excluding endothelial cells) and the glomerular mesangium. We previously demonstrated that RBP-J, the final transcriptional effector of the Notch signaling pathway, controls the phenotype of renin cells which are also derived from the Foxd1 lineage. We therefore hypothesized that RBP-J regulates the differentiation of stromal cells into the mural cells of the kidney arterioles. To answer this question, we deleted RBP-J in the metanephric stromal precursor cells, and found that mutant mice displayed striking kidney abnormalities in early life. Staining for vascular markers showed a significant decrease in the number of arteries and arterioles. Vessel walls were thinner due to a decrease in both the size and number of smooth muscle cells. We also noted a near absence of renin cells, supporting our earlier findings regarding the key role of RBP-J in establishing the differentiated renin cell endowment. These findings were accompanied by delayed nephrogenesis and other renal abnormalities including tubular dilation. In addition, mutant kidneys lacked Foxd1-lineage cells within the glomeruli, resulting in a depletion of mesangial cells and glomerular aneurysms. Thus, we conclude that RBP-J in Foxd1+ stromal cells plays a key role in the development of the kidney vasculature, and regulates the fate of cells that compose the arterial tree and the glomerular tuft.


Nephrology ◽  
1997 ◽  
Vol 3 (1) ◽  
pp. 95-101 ◽  
Author(s):  
C. GÓMEZ-GUERRERO ◽  
N. DUQUE ◽  
MJ LÓPEZ-ARMADA ◽  
MT CASADO ◽  
F. VIVANCO ◽  
...  

2004 ◽  
Vol 286 (1) ◽  
pp. F134-F143 ◽  
Author(s):  
Shinya Mizuno ◽  
Toshikazu Nakamura

Diabetic nephropathy is now the leading cause of end-stage renal diseases, and glomerular sclerotic injury is an initial event that provokes renal dysfunction during processes of diabetes-linked kidney disease. Growing evidence shows that transforming growth factor-β1 (TGF-β1) plays a key role in this process, especially in eliciting hypertrophy and matrix overaccumulation. Thus it is important to find a ligand system to antagonize the TGF-β1-mediated pathogenesis under high-glucose conditions. Herein, we provide evidence that hepatocyte growth factor (HGF) targets mesangial cells, suppresses TGF-β1 production, and minimizes glomerular sclerotic changes, using streptozotocin-induced diabetic mice. In our murine model, glomerular sclerogenesis (such as tuft area expansion and collagen deposition) progressed between 6 and 10 wk after the induction of hyperglycemia, during a natural course of diabetic disease. Glomerular HGF expression levels in the diabetic kidney transiently increased but then declined below a basal level, with manifestation of glomerular sclerogenesis. When anti-HGF IgG was injected into mice for 2 wk (i.e., from weeks 4 to 6 after onset of hyperglycemia), these glomerular changes were significantly aggravated. When recombinant HGF was injected into the mice for 4 wk (i.e., between 6 and 10 wk following streptozotocin treatment), the progression of glomerular hypertrophy and sclerosis was almost completely inhibited, even though glucose levels remained unchanged (>500 mg/dl). Even more important, HGF repressed TGF-β1 production in glomerular mesangial cells even under hyperglycemic conditions both in vitro and in vivo. Consequently, not only albuminuria but also tubulointerstitial fibrogenesis were attenuated by HGF. Overall, HGF therapy inhibited the onset of renal dysfunction in the diabetic mice. On the basis of these findings, we wish to emphasize that HGF plays physiological and therapeutic roles in blocking renal fibrogenesis during a course of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document