scholarly journals Type I Glanzmann's Thrombasthenia in a Great Pyrenees Dog

1996 ◽  
Vol 33 (5) ◽  
pp. 503-511 ◽  
Author(s):  
M. K. Boudreaux ◽  
K. Kvam ◽  
A. R. Dillon ◽  
C. Bourne ◽  
M. Scott ◽  
...  

An 8-month-old female Great Pyrenees dog with chronic epistaxis and a history of gingival bleeding during shedding of deciduous teeth was evaluated for platelet function. Platelet morphology was normal at both the light and electron microscopic level. Platelet number and mean platelet volume were also normal. Platelet aggregation responses to adenosine diphosphate, collagen, platelet activating factor, and thrombin were markedly reduced, although shape change responses were normal. Clot retraction was markedly impaired. Monoclonal antibody (MoAb) Y2/51, a murine anti-human platelet β3 antibody that cross-reacts with canine platelet β3 , and MoAb 5G11, a murine anti-dog platelet αIIbβ3 antibody, bound minimally to affected dog platelets, as demonstrated by flow cytometry. Binding of MoAb Y2/51 was not detectable by immunoblot. MoAb CAP1, a murine anti-dog fibrinogen receptor-induced binding site antibody, failed to bind to affected dog platelets, as demonstrated by flow cytometry. A reduction in glycoproteins αIIb and β3 was demonstrated by two-dimensional protein electrophoresis. This is the first reported case of type I Glanzmann's thrombasthenia in the dog that closely resembles the clinical syndrome and the platelet morphology described in type I Glanzmann's thrombasthenia of human beings.

1983 ◽  
Vol 49 (03) ◽  
pp. 182-186
Author(s):  
G T E Zonneveld ◽  
E F van Leeuwen ◽  
A Sturk ◽  
J W ten Cate

SummaryQuantitative glycoprotein (GP) analysis of whole platelets or platelet membranes was performed by SDS-polyacrylamide gelelectrophoresis (SDS-PAGE) and periodic acid Schiff staining in the families of two unrelated Glanzmann’s thrombasthenia (GT) patients. Each family consisted of two symptom free parents, a symptom free daughter and a GT daughter. All symptom free members had a normal bleeding time, clot retraction and platelet aggregation response to adenosine 5’-diphosphate (ADP), collagen and adrenalin. Platelet Zw* antigen was normally expressed in these subjects. GT patiens, classified as a type I and II subject, showed reduced amounts of GP lib and of GP nia. Analysis of isolated membranes in the non-reduced state, however, showed that the amount of GP Ilia was also reduced in three of the four parents, whereas one parent (of the GT type I patient) and the two unaffected daughters had normal amounts of GP Ilia. Quantitative SDS-PAGE may therefore provide a method for the detection of asymptomatic carriers in GT type I and II.


1995 ◽  
Vol 74 (06) ◽  
pp. 1533-1540 ◽  
Author(s):  
Pål André Holme ◽  
Nils Olav Solum ◽  
Frank Brosstad ◽  
Nils Egberg ◽  
Tomas L Lindahl

SummaryThe mechanism of formation of platelet-derived microvesicles remains controversial.The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann’s thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. MAb FN52 against CD9 which activates the complement system and produces microvesicles due to a membrane permeabilization, ADP (9.37 μM), and the thrombin receptor agonist peptide SFLLRN (100 μM) that activates platelets via G-proteins were used as inducers. In a series of experiments platelets were also preincubated with PGE1 (20 μM). The number of liberated microvesicles, as per cent of the total number of particles (including platelets), was measured using flow cytometry with FITC conjugated antibodies against GPIIIa or GPIb. Activation of GPIIb-IIIa was detected as binding of PAC-1, and exposure of aminophospholipids as binding of annexin V. With normal donors, activation of the complement system induced a reversible PAC-1 binding during shape change. A massive binding of annexin V was seen during shape change as an irreversible process, as well as formation of large numbers of microvesicles (60.6 ±2.7%) which continued after reversal of the PAC-1 binding. Preincubation with PGE1 did not prevent binding of annexin V, nor formation of microvesicles (49.5 ± 2.7%), but abolished shape change and PAC-1 binding after complement activation. Thrombasthenic platelets behaved like normal platelets after activation of complement except for lack of PAC-1 binding (also with regard to the effect of PGE1 and microvesicle formation). Stimulation of normal platelets with 100 μM SFLLRN gave 16.3 ± 1.2% microvesicles, and strong PAC-1 and annexin V binding. After preincubation with PGE1 neither PAC-1 nor annexin V binding, nor any significant amount of microvesicles could be detected. SFLLRN activation of the thrombasthenic platelets produced a small but significant number of microvesicles (6.4 ± 0.8%). Incubation of thrombasthenic platelets with SFLLRN after preincubation with PGE1, gave results identical to those of normal platelets. ADP activation of normal platelets gave PAC-1 binding, but no significant annexin V labelling, nor production of microvesicles. Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.


1995 ◽  
Vol 73 (05) ◽  
pp. 756-762 ◽  
Author(s):  
Yoshiaki Tomiyama ◽  
Hirokazu Kashiwagi ◽  
Satoru Kosugi ◽  
Masamichi Shiraga ◽  
Yoshio Kanayama ◽  
...  

SummaryWe analyzed the molecular genetic defect responsible for type I Glanzmann’s thrombasthenia in a Japanese patient. In an immunoblot assay using polyclonal anti-GPIIb-IIIa antibodies, some GPIIIa (15% of normal amount) could be detected in the patient’s platelets, whereas GPIIb could not (<2% of normal amount). Nucleotide sequence analysis of platelet GPIIb mRNA-derived polymerase chain reaction (PCR) products revealed that patient’s GPIIb cDNA had a 75-bp deletion in the 3’ boundary of exon 17 resulting in an in-frame deletion of 25 amino acids. DNA analysis and family study revealed that the patient was a compound heterozygote of two GPIIb gene defects. One allele derived from her father was not expressed in platelets, and the other allele derived from her mother had a 9644C → T mutation which was located at the position -3 of the splice donor junction of exon 17 and resulted in a termination codon (TGA). Moreover, quantitative analysis demonstrated that the amount of the abnormal GPIIb transcript in the patient’s platelets was markedly reduced. Thus, the C → T mutation resulting in the abnormal splicing of GPIIb transcript and the reduction in its amount is responsible for Glanzmann’s thrombasthenia.


1999 ◽  
Vol 105 (2) ◽  
pp. 523-531 ◽  
Author(s):  
Jian Ruan ◽  
Markus Schmugge ◽  
Kenneth J. Clemetson ◽  
Eric Cazes ◽  
Robert Combrie ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 669-677 ◽  
Author(s):  
Marie-Christine Morel-Kopp ◽  
Cécile Kaplan ◽  
Valérie Proulle ◽  
Vincent Jallu ◽  
Chantal Melchior ◽  
...  

Abstract Glanzmann's thrombasthenia (GT) is a recessive autosomal bleeding disorder characterized by abnormal platelet aggregation due to a qualitative or quantitative defect of the glycoprotein (GP) IIb-IIIa complex (integrin αIIbβ3). We describe a new mutation in the GPIIIa gene responsible for type I GT in a consanguineous Algerian family. A discordance between phenotyping and genotyping of the GPIIIa-related HPA-1 platelet alloantigen system in three family members heterozygous for the disease suggested a genetic defect in the GPIIIa gene and a normal GPIIb gene. Sequence analysis of amplified genomic DNA fragments showed a 6-bp deletion in exon 7 of the GPIIIa gene resulting in the amino acid deletion/substitution (Ile325Pro326Gly327 → Met) and creating a new BspHI restriction site. Expression of the mutated integrin β3 subunit cDNA in Chinese hamster ovary cells showed that the cDNA gene was transcribed into a full-length β3 protein with an apparent molecular weight identical to wild-type β3 and accumulated as a single-chain molecule in the cell cytoplasm. The absence of heterodimeric complex formation of the mutant β3 protein with endogeneous αv was shown by immunoprecipitation experiments, intracellular immunofluorescent labeling, and a semiquantitative enzyme-linked immunosorbent assay using the αvβ3 complex-specific monoclonal antibodies LM609 and 23C6. Substitution of the methionine residue by a proline, present at position 326 of wild-type β3, did not restore the ability of the recombinant mutant β3 protein to associate with αv, suggesting that the Ile-Pro-Gly motif is located in a β3 domain important for integrin subunit interaction. The association of a BspHI restriction site with this newly identified mutation has allowed allele-specific restriction analysis of Algerian GT individuals and the identification of two new unrelated type I patients exhibiting the same mutation, suggesting that the described mutation might be significant in this population and that BspHI restriction analysis will provide a useful screening assay for antenatal diagnosis and genetic counselling.


2013 ◽  
Vol 33 (04) ◽  
pp. 305-312 ◽  
Author(s):  
K. Sauer ◽  
B. Winkler ◽  
M. Eyrich ◽  
P. G. Schlegel ◽  
V. Wiegering

SummaryGlanzmann’s thrombasthenia (GT) is an autosomal recessive disorder characterized by a lack of thrombocyte aggregation due to the absence of thrombocyte glycoproteins IIb and αIIbβ3. The role of haematopoietic stem cell transplantation (HSCT) in GT remains controversial. However, HSCT offers the only curative approach for patients with a severe clinical phenotype.In this review, we will discuss the limitation of current status evidence and the specific risk of GT, in particular the alloimmunization and refractoriness to thrombocyte infusions. 19 successful HSCT in 18 GT type I patients have been reported. Mean age at transplantation was 5 years. All patients are still alive. The majority received sibling bone marrow transplant with busulfan and cyclophosphamid conditioning. GvHD incidence was within the normal range, but 10 patients showed alloimmunization of thrombocytes. Median follow up is 25 months.


1983 ◽  
Vol 214 (2) ◽  
pp. 331-337 ◽  
Author(s):  
G Gogstad ◽  
Ø Hetland ◽  
N O Solum ◽  
H Prydz

By means of an antiserum specific to the complex of the platelet membrane glycoproteins IIb and IIIa we demonstrate here that monocytes and purified monocyte membranes share these glycoproteins with platelets. The monocyte glycoprotein IIb-IIIa complex showed complete immunological identity with the platelet counterpart and, furthermore, dissociated after EDTA treatment exactly as did the platelet complex. In Glanzmann's thrombasthenia type I, monocytes as well as platelets lack this antigen completely.


Platelets ◽  
2009 ◽  
Vol 20 (1) ◽  
pp. 12-15 ◽  
Author(s):  
Meganathan Kannan ◽  
Firdos Ahmad ◽  
Birendra Kumar Yadav ◽  
Mona Anand ◽  
Paresh Jain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document