An Optimization Approach to Vibration Isolation of Rigid Bodies

1997 ◽  
Vol 25 (3) ◽  
pp. 165-175
Author(s):  
P. S. Heyns

The conventional single-degree-of-freedom approach to isolator design dealt with in most undergraduate curricula, is not always adequate for the design of practical isolator systems. In this article, an optimization approach to the design problem is presented and the viability of the approach demonstrated. It is, however, also shown that multiple local minima may exist and that due care should be exercised in the application of the method.

1997 ◽  
Vol 64 (1) ◽  
pp. 227-229 ◽  
Author(s):  
M. F. Beatty

Wilms (1995) has considered the plane motion of three lineal rigid bodies subject to linear damping over their length. He shows that these plane single-degree-of-freedom systems are governed by precisely the same fundamental differential equation. It is not unusual that several dynamical systems may be formally characterized by the same differential equation, but the universal differential equation for these systems is unusual because it is exactly the same equation for the three very different systems. It is shown here that these problems belong to a more general class of problems for which the differential equation is exactly the same for every lineal rigid body regardless of its geometry.


Author(s):  
Md. Emdadul Hoque ◽  
Takeshi Mizuno ◽  
Yuji Ishino ◽  
Masaya Takasaki

A vibration isolation system is presented in this paper which is developed by the combination of multiple vibration isolation modules. Each module is fabricated by connecting a positive stiffness suspension in series with a negative stiffness suspension. Each vibration isolation module can be considered as a self-sufficient single-degree-of-freedom vibration isolation system. 3-DOF vibration isolation system can be developed by combining three modules. As the number of motions to be controlled and the number of actuators are equal, there is no redundancy in actuators in such vibration isolation systems. Experimental results are presented to verify the proposed concept of the development of MDOF vibration isolation system using vibration isolation modules.


Author(s):  
Hideya Yamaguchi ◽  
Masahito Yashima ◽  
Takao Yoshikawa

Abstract In order to achieve vibration isolation and reduction for a multi-degrees-of-freedom system, this paper develops the on-off control that has been proposed on the single-degree-of-freedom system by the authors. The method introduces an additional spring and mass system, and the additional mass is designed to control the clamping friction force by the friction joint switching mechanism. The non-linear control law for the single-degree-of-freedom system is applied to a multi-degrees-of-freedom system by incorporating the idea of the independent modal space control (IMSC) method. Numerical simulations and experiments demonstrate the effectiveness of the method.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document