The Properties of a Styrene Butadiene Block Copolymer with a High Styrene Content

2014 ◽  
Vol 41 (10) ◽  
pp. 45-50
Author(s):  
A.A. Alekseev ◽  
A.V. Lobanov ◽  
V.S. Osipchik ◽  
V.S. Glukhovskoi ◽  
V.M. Aristov ◽  
...  

The structure and properties of block copolymers (BCPs) of styrene and butadiene of grade StiroTEP-70 (styrene:butadiene = 70:30, Mw/Mn = 1.43–1.45) are discussed. Analysis of IR spectra enables the BCP to be treated as polystyrene-stat-copoly(butadiene/styrene/1,2-butadiene)-polystyrene. It is suggested that the absorption band at 542 cm-1 be considered as characteristic when identifying polymers with extensive polystyrene phases. At temperatures of 190–230°C, the BCP is partially crosslinked, and at 260°C it breaks down. The BCP is processed well at temperatures up to 200°C.

2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


2021 ◽  
pp. 51000
Author(s):  
Fathin Hani Azizul Rahim ◽  
Abdul Aziz Saleh ◽  
Raa Khimi Shuib ◽  
Ku Marsilla Ku Ishak ◽  
Zuratul Ain Abdul Hamid ◽  
...  

2008 ◽  
Vol 35 (5) ◽  
pp. 454-460 ◽  
Author(s):  
Krzysztof Zieliński

This article describes the effect of heat aging and styrene–butadiene–styrene (SBS) content in bitumen on the adhesion properties of mastics (bitumen-filler mix) to concrete and steel substrates. Test results showed that the adhesion strength of bituminous mastics to concrete and steel substrates decreased as the SBS content increased. Bitumen types modified with 9%–12% of SBS, commonly used in waterproofing materials, showed an approximately three times weaker bond with concrete and steel substrates than the nonmodified equivalents. Results also showed that after heat aging, the adhesion strength of the nonmodified bitumen was always higher than that of the unheated bitumen modified with 9%–12% of SBS.


Sign in / Sign up

Export Citation Format

Share Document