Ecosystem services

2011 ◽  
Vol 35 (5) ◽  
pp. 575-594 ◽  
Author(s):  
Marion B. Potschin ◽  
Roy H. Haines-Young

The ‘ecosystem service’ debate has taken on many features of a classic Kuhnian paradigm. It challenges conventional wisdoms about conservation and the value of nature, and is driven as much by political agendas as scientific ones. In this paper we review some current and emerging issues arising in relation to the analysis and assessment of ecosystem services, and in particular emphasize the need for physical geographers to find new ways of characterizing the structure and dynamics of service providing units. If robust and relevant valuations are to be made of the contribution that natural capital makes to human well-being, then we need a deeper understanding of the way in which the drivers of change impact on the marginal outputs of ecosystem services. A better understanding of the trade-offs that need to be considered when dealing with multifunctional ecosystems is also required. Future developments must include methods for describing and tracking the stocks and flows that characterize natural capital. This will support valuation of the benefits estimation of the level of reinvestment that society must make in this natural capital base if it is to be sustained. We argue that if the ecosystem service concept is to be used seriously as a framework for policy and management then the biophysical sciences generally, and physical geography in particular, must go beyond the uncritical ‘puzzle solving’ that characterizes recent work. A geographical perspective can provide important new, critical insights into the place-based approaches to ecosystem assessment that are now emerging.

Author(s):  
Paolo Vassallo ◽  
Claudia Turcato ◽  
Rigo Ilaria ◽  
Claudia Scopesi ◽  
Andrea Costa ◽  
...  

Forest ecosystems are important providers of ecosystem functions and services belonging to four categories: supporting, provisioning, regulating, and cultural ecosystem services. Forest management, generally focused on timber production, has consequences on the ability of the system to keep providing services. Silviculture, in fact, may affect ecological structures and processes from which services arise. In particular, the removal of biomass causes a radical change in the stocks and flows of energy characterizing the system. Aiming at the assessment of differences in stored natural capital and ecosystem functions and services provision, three differently managed temperate forests of common beech (Fagus sylvatica) were considered: (1) a forest in semi-natural condition, (2) a forest carefully managed to get timber in a sustainable way and (3) a forest exploited without management. Natural capital and ecosystem functions and services are here accounted in biophysical terms. Specifically, all the resources used up to create the biomass (stock) and maintain the production (flow) of the different components of the forest system were calculated. Both stored emergy and empower decrease at increasing human pressure on the forest, resulting in a loss of natural capital and a diminished ability of the natural system to contribute to human well-being in terms of ecosystem services provision.


2021 ◽  
Vol 13 (9) ◽  
pp. 4638
Author(s):  
Paolo Vassallo ◽  
Claudia Turcato ◽  
Ilaria Rigo ◽  
Claudia Scopesi ◽  
Andrea Costa ◽  
...  

Forest ecosystems are important providers of ecosystem functions and services belonging to four categories: supporting, provisioning, regulating and cultural ecosystem services. Forest management, generally focused on timber production, has consequences on the ability of the system to keep providing services. Silviculture, in fact, may affect the ecological structures and processes from which services arise. In particular, the removal of biomass causes a radical change in the stocks and flows of energy characterizing the system. Aiming at the assessment of differences in stored natural capital and ecosystem functions and services provision, three differently managed temperate forests of common beech (Fagus sylvatica) were considered: (1) a forest in semi-natural condition, (2) a forest carefully managed to get timber in a sustainable way and (3) a forest exploited without management. Natural capital and ecosystem functions and services are here accounted in biophysical terms. Specifically, all the resources used up to create the biomass (stock) and maintain the production (flow) of the different components of the forest system were calculated. Both stored emergy and empower decrease with increasing human pressure on the forest, resulting in a loss of natural capital and a diminished ability of the natural system to contribute to human well-being in terms of ecosystem services provision.


2020 ◽  
Author(s):  
Pamela Collins ◽  
Rachel Neugarten ◽  
Becky Chaplin-Kramer ◽  
Dave Hole ◽  
Steve Polasky

<p>Ecosystems around the world support both biodiversity and human well-being, providing essential goods and services including food, fiber, building materials, moisture/temperature regulation, carbon sequestration, disaster risk reduction, and spiritual/cultural meaning. While we all depend on these benefits to survive and thrive, they are especially critical to the world’s most vulnerable people. And as populations and economies grow and the climate continues to change, humanity may find itself needing nature’s benefits in new and unexpected ways.</p><p>Mapping ecosystem service provision globally along with biodiversity is essential to effective, just, and lasting conservation planning and prioritization. Identifying global ecosystem service hotspots is key to enabling multi-scale water-energy-land nexus planning for managing socio-economic, climatic, and technological change. This presentation will showcase the latest results of a first-of-its-kind effort to collect the best available spatial datasets of global ecosystem service provision and synthesize them into a common “critical natural capital” framework that highlights global ecosystem service “hotspots” for both humanity overall and the world’s most vulnerable people in particular. Drawn from a wide range of observational and modeling studies conducted by physical and social scientists around the world, this innovative synthesis represents the first attempt to create an integrated spatial map of all that we know about humanity’s dependence on nature, on land and at sea.</p><p>Biodiversity is intimately linked to ecosystem services, since intact ecosystems with diverse and abundant native flora and fauna have the greatest ability to provide these irreplaceable services to humanity. Thus, conserving nature for biodiversity and conserving nature for human well-being are two sides of the same coin. This presentation will explore how to integrate these maps of the world’s critical natural capital into the global conservation conversation. These maps will enable investors and policymakers at the global and national scales to explore the potential consequences to humanity of diverse area-based conservation strategies, providing crucial context for the Post-2020 Global Biodiversity Framework and related conversations.</p><p>Sustainable use and management of land and sea, in line with the vision outlined by the Sustainable Development Goals, is essential to preserving both biodiversity and humanity’s ability to thrive on this planet. The upcoming negotiation of the Post-2020 Global Biodiversity Framework represents a key opportunity to set the planet on a path to more strategic and effective management of the terrestrial and marine realms, and our maps can inform decision-making around the size and spatial distribution of protected areas and other effective conservation measures. Society can only manage what it can monitor, and with the clearer vision of the most important places for both biodiversity conservation and ecosystem service provision these maps provide, humanity will be well-poised to start the next decade off on the right foot.</p>


Author(s):  
Lee Bak Yeo ◽  
Ismail Said ◽  
Kei Saito ◽  
Gabriel Hoh Teck Ling

This paper presents the concept of ecosystem services and its trend, scale and gradient, through reviewing articles, books and internet sources. Result shows that evaluation of ecosystem services in small towns within urban-rural gradient in developing countries still not being scrutinized explicitly, especially trade-offs’ concern. Environmental damages in the developing countries are burgeoning. As land conversion from natural capital to built capital is also keep on rising for temporal economic interests. Therefore, it has induced changes in ecological functions and affected the ecosystem services supply. In the context of Peninsular Malaysia, ungoverned built capitals and flaw of policy further contribute to fallacious decision making. And yet, there is still no specific framework or initiatives directly deals with ecosystem and biodiversity. A conceptual framework has been proposed to assess and value ecosystem services through integration of InVEST model (Integrated Valuation of Ecosystem Services and Tradeoffs) and bundle of ecosystem services. The framework allows stakeholders to have an insight of the pros and cons about the landscape changes, be it in ecological, economic or social-cultural perspectives. Therefore, it may help to ameliorate the trade-offs and enhance the synergies of ecosystem services that eventually can contribute to attaining human well-being, and to promote sustainable growth.


2021 ◽  
Author(s):  
José Brilha

<p>The concept of geodiversity, despite being in use for almost 30 years, still has little impact on society. It is not easy to explain the reason for this dissociation, considering that the elements that constitute geodiversity are intrinsically part of nature, play an essential role in ecosystem services and, consequently, in human well-being.</p><p>During the last decade we have seen a great development in the interest of the geoscientific community in this subject, represented by the increase in the publication of papers and doctoral and master theses all over the world. One of the main challenges is now to transpose all this scientific knowledge into society. Obviously, theoretical and conceptual discussions about geodiversity are an integral part of science and must continue, but if we want that society recognizes the importance and value of geodiversity, we must be able to demonstrate clearly how geodiversity can help to solve some of the problems we face today.</p><p>Among other priorities, the geoscientific community has to be able to demonstrate in an structured way:</p><ul><li>The importance of geodiversity in implementing nature conservation actions and its direct relationship with biodiversity;</li> <li><span>The contribution of geodiversity for ecosystems restoration and its accounting as part of natural capital;</span></li> <li><span>The need to quantify the role of geodiversity in ecosystem services;</span></li> <li><span>The urgency of make environmental impact assessments including all possible effects that may affect geodiversity elements and processes;</span></li> <li><span>The importance of integrate the concept of geodiversity in pre-university education curricula;</span></li> <li><span>That the information and environmental interpretation provided to visitors of protected areas and other conservation areas should always include geodiversity.</span></li> </ul><p>Once the importance of geodiversity is fully recognized by policy-makers, managers, and the society in general, the fulfilment of the UN Sustainable Development Goals will be for sure closer than it is today.</p>


2018 ◽  
Vol 10 (9) ◽  
pp. 3285 ◽  
Author(s):  
Roxanne Lorilla ◽  
Konstantinos Poirazidis ◽  
Stamatis Kalogirou ◽  
Vassilis Detsis ◽  
Aristotelis Martinis

To manage multiple ecosystem services (ES) effectively, it is essential to understand how the dynamics of ES maintain healthy ecosystems to avoid potential negative impacts on human well-being in the context of sustainable development. In particular, the Ionian Islands in the central Mediterranean are characterized by high natural, ecological, and recreational value; however, the intensification of human activities over time has resulted in the loss of natural ecosystems, which might have negatively impacted ES. Here, we aimed to assess and understand the spatiotemporal dynamics of ES supply and how these components interact across the Ionian Islands to optimize future ES provision and mitigate current trade-offs. We quantified multiple ecosystem services and analyzed their interactions at a temporal scale across the four prefectures of the Ionian Islands. Seven ES were quantified covering all three ES sections (provisioning, regulating and maintenance, and cultural) of the Common International Classification of Ecosystem Services (CICES). ES interactions were investigated by analyzing ES relationships, identifying ES bundles (sets of ES that repeatedly occur together across space and time), and specifying ES occurrence within bundles. The three ES groups exhibited similar patterns on some islands, but differed on islands with areas of high recreation in parallel to low provisioning and regulating ES. Temporal variations showed both stability and changes to the supply of ES, as well as in the interactions among them. Different patterns among the islands were caused by the degree of mixing between natural vegetation and olive orchards. This study identified seven ES bundles that had distinct compositions and magnitudes, with both unique and common bundles being found among the islands. The olive grove bundle delivered the most ES, while the non-vegetated bundle delivered negligible amounts of ES. Spatial and temporal variation in ES appear to be determined by agriculture, land abandonment, and increasing tourism, as well as the occurrence of fires. Knowledge about the spatial dynamics and interactions among ES could provide information for stakeholders and decision-making processes to develop appropriate sustainable management of the ecosystems on the Ionian Islands to secure ecological, social, and economic resilience.


BioScience ◽  
2019 ◽  
Vol 69 (7) ◽  
pp. 566-574 ◽  
Author(s):  
Erik Andersson ◽  
Johannes Langemeyer ◽  
Sara Borgström ◽  
Timon McPhearson ◽  
Dagmar Haase ◽  
...  

AbstractThe circumstances under which different ecosystem service benefits can be realized differ. The benefits tend to be coproduced and to be enabled by multiple interacting social, ecological, and technological factors, which is particularly evident in cities. As many cities are undergoing rapid change, these factors need to be better understood and accounted for, especially for those most in need of benefits. We propose a framework of three systemic filters that affect the flow of ecosystem service benefits: the interactions among green, blue, and built infrastructures; the regulatory power and governance of institutions; and people's individual and shared perceptions and values. We argue that more fully connecting green and blue infrastructure to its urban systems context and highlighting dynamic interactions among the three filters are key to understanding how and why ecosystem services have variable distribution, continuing inequities in who benefits, and the long-term resilience of the flows of benefits.


Author(s):  
Leon C. Braat

The concept of ecosystem services considers the usefulness of nature for human society. The economic importance of nature was described and analyzed in the 18th century, but the term ecosystem services was introduced only in 1981. Since then it has spurred an increasing number of academic publications, international research projects, and policy studies. Now a subject of intense debate in the global scientific community, from the natural to social science domains, it is also used, developed, and customized in policy arenas and considered, if in a still somewhat skeptical and apprehensive way, in the “practice” domain—by nature management agencies, farmers, foresters, and corporate business. This process of bridging evident gaps between ecology and economics, and between nature conservation and economic development, has also been felt in the political arena, including in the United Nations and the European Union (which have placed it at the center of their nature conservation and sustainable use strategies). The concept involves the utilitarian framing of those functions of nature that are used by humans and considered beneficial to society as economic and social services. In this light, for example, the disappearance of biodiversity directly affects ecosystem functions that underpin critical services for human well-being. More generally, the concept can be defined in this manner: Ecosystem services are the direct and indirect contributions of ecosystems, in interaction with contributions from human society, to human well-being. The concept underpins four major discussions: (1) Academic: the ecological versus the economic dimensions of the goods and services that flow from ecosystems to the human economy; the challenge of integrating concepts and models across this paradigmatic divide; (2) Social: the risks versus benefits of bringing the utilitarian argument into political debates about nature conservation (Are ecosystem services good or bad for biodiversity and vice versa?); (3) Policy and planning: how to value the benefits from natural capital and ecosystem services (Will this improve decision-making on topics ranging from poverty alleviation via subsidies to farmers to planning of grey with green infrastructure to combining economic growth with nature conservation?); and (4) Practice: Can revenue come from smart management and sustainable use of ecosystems? Are there markets to be discovered and can businesses be created? How do taxes figure in an ecosystem-based economy? The outcomes of these discussions will both help to shape policy and planning of economies at global, national, and regional scales and contribute to the long-term survival and well-being of humanity.


Sign in / Sign up

Export Citation Format

Share Document