scholarly journals Fast four-dimensional tensile test monitored via X-ray computed tomography: Single projection–based digital volume correlation dedicated to slender samples

2018 ◽  
Vol 53 (7) ◽  
pp. 473-484 ◽  
Author(s):  
Clément Jailin ◽  
Ante Buljac ◽  
Amine Bouterf ◽  
François Hild ◽  
Stéphane Roux

The measurement of four-dimensional (i.e. three-dimensional space and time) displacement fields of in situ tests within X-ray computed tomography scanners (i.e. lab-scale X-ray computed tomography) is considered herein using projection-based digital volume correlation. With a single projection per loading (i.e. time) step, the developed method allows the loading not to be interrupted and to vary continuously during the scan rotation. As a result, huge gains in acquisition time (i.e. more than two orders of magnitude) need to be reached. The kinematic analysis is carried out using predefined space and time bases combined with model reduction techniques (i.e. proper generalized decomposition with space–time decomposition). The accuracy of the measured kinematic basis is assessed via gray-level residual fields. An application to an in situ tensile test composed of 127 time steps is performed. Because of the slender geometry of the sample, a specific beam space regularization is used, which is composed of a stack of rigid sections. Large improvements on the residual, the signal-to-noise ratio of which evolves from 9.9 to 26.7 dB, validate the procedure.

2013 ◽  
Vol 53 (7) ◽  
pp. 1265-1275 ◽  
Author(s):  
P. Leplay ◽  
J. Réthoré ◽  
S. Meille ◽  
M.-C. Baietto ◽  
J. Adrien ◽  
...  

2019 ◽  
Vol 236 ◽  
pp. 128-130 ◽  
Author(s):  
Peter Wagner ◽  
Oliver Schwarzhaupt ◽  
Michael May

2018 ◽  
Vol 127 (2) ◽  
pp. 371-389 ◽  
Author(s):  
Tyler Oesch ◽  
Frank Weise ◽  
Dietmar Meinel ◽  
Christian Gollwitzer

Author(s):  
Kyuya Nakagawa ◽  
Shinri Tamiya ◽  
Shu Sakamoto ◽  
Gabsoo Do ◽  
Shinji Kono ◽  
...  

X-ray computed tomography technique was used to observe microstructure formation during freeze-drying. A specially designed vacuum freeze-drying stage was equipped at the X-ray CT stage, and the frozen and dried microstructures of dextrin solutions were successfully observed. It was confirmed that the many parts of the pore microstructures formed as a replica of the original ice microstructures, whereas some parts formed as a consequence of the dehydration dependent on the relaxation level of the glassy phases, suggesting that the post-freezing annealing is advantageous for avoiding quality loss that relates to the structural deformation of glassy matters. Keywords: freeze-drying; X-ray CT; ice microstructure; glassy state


2019 ◽  
Vol 181 ◽  
pp. 377-384 ◽  
Author(s):  
Brendan P. Croom ◽  
Helena Jin ◽  
Philip J. Noell ◽  
Brad L. Boyce ◽  
Xiaodong Li

Sign in / Sign up

Export Citation Format

Share Document