Improving the tensile property calculations with plastic zone radius measurements in depth-sensing spherical indentation tests

Author(s):  
Tairui Zhang ◽  
Jianxun Li ◽  
Xun Sun ◽  
Xiandong Shang ◽  
Weiqiang Wang

Depth-sensing spherical indentation tests (SITs) have been widely used in tensile property calculations, but the accuracy and reproducibility of calculations may be significantly influenced by displacement measurement errors. Taking two representative tensile property calculation methods as examples, namely the analytical and numerical methods, the rationale as to why accurate and reproducible tensile property calculations cannot be expected from the depth-sensing SITs was discussed in detail. Subsequently, the proportional limit σ0 calculation from plastic zone radius rp measurements, which was analytically developed in the expanding cavity model (ECM) and experimentally measured by digital image correlation (DIC), was introduced to enhance the accuracy and reproducibility of the two representative methods. Principles for setting the strain threshold εth were established, and factors influencing the σ0 calculation from rp measurements were investigated through the optical system, the friction condition, the hardening behaviors of specimen materials, and the indentation depth. Through finite element calculations, it was proven that tensile property calculations at the existence of displacement measurement errors, particularly the constant error from the origin correction, can be significantly improved with the introduction of rp measurements. Similar findings were also observed in experiments on four metals that exhibited different hardening behaviors.

1998 ◽  
Vol 13 (6) ◽  
pp. 1650-1655 ◽  
Author(s):  
N. Huber ◽  
Ch. Tsakmakis

A device for spherical indentation using a tip radius of 2 mm and loads up to 10 kN is presented. This facility can be applied, for example, to verify methods for characterizing the behavior of materials exhibiting homogeneous and isotropic constitutive properties. The indentation device can be driven both load- and depth-controlled. The accuracy of measurements is about 1 N for load and 0.2 μm for depth at a total depth of 200 μm. Two materials, an austenitic steel and an aluminum alloy, have been tested and their Young's moduli have been determined. For determining Young's modulus from spherical indentation data, use is made of a so-called Lt method, which had been developed in Ref. 1. Results obtained in this way are compared with corresponding values measured by one-dimensional homogeneous tensile experiments.


2020 ◽  
Vol 56 (1) ◽  
pp. 50-64
Author(s):  
Tairui Zhang ◽  
Jianzhang Guo ◽  
Weiqiang Wang

In this study, a strain-pattern-based method was proposed to simultaneously determine the uniaxial tensile residual stress and flow property from a single-cycle spherical indentation test. The variation of the plastic zone radius (at the specimen surface) with uniaxial tensile residual stress was analytically investigated by the expanding cavity model. The analysis proved that the circular plastic boundary will be elliptical under the action of uniaxial residual stress (with a shrunken plastic zone radius along the loading direction and an extended plastic zone radius vertical to the loading direction), and this difference can be used to calibrate the magnitude of the residual stress. The analytical result was verified and modified through finite element calculations, after which a set of regression functions for Holloman hardening metals was established for load compensation, proportional limit correction, and hardening exponent calculation. The effectiveness of the method was verified through finite element calculations of spherical indentation tests on 16 Holloman hardening and 6 metals used in engineering applications at different residual stress levels. The verification proved that maximum errors for strength and residual stress calculations are about 10% and 15%, respectively, and the potential of the new proposed method was validated.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


2012 ◽  
Vol 238 ◽  
pp. 787-790
Author(s):  
Zhong Ming Su ◽  
Rui Liu

According to the elastic-plastic theory, the analytical formula of plastic zone radius is established for circular tunnel in its excavation and support, and the effect of anchor support is verified based on the radius of plastic zone from the perspective of measured axial force. The influences to plastic zone by the variations of mechanical parameters and resistance of support are quantitatively analyzed. The result is of great significance to the monitoring measurement and the dynamic design and construction of tunnel.


2001 ◽  
Vol 123 (3) ◽  
pp. 245-250 ◽  
Author(s):  
S. Kucharski ◽  
Z. Mro´z

The identification method of hardening parameters specifying stress-strain curve is proposed by applying spherical indentation test and measuring the penetration depth during loading and unloading. The loading program is composed of a geometric sequence of loading and partial unloading steps from which the variation of permanent penetration with load level is determined. This data is used for specification of two parameters k and m occurring in the plastic hardening curve εp=σ/k1/m, where εp denotes the plastic strain.


2001 ◽  
Vol 16 (6) ◽  
pp. 1660-1667 ◽  
Author(s):  
L. Riester ◽  
T. J. Bell ◽  
A. C. Fischer-Cripps

The present work shows how data obtained in a depth-sensing indentation test using a Knoop indenter may be analyzed to provide elastic modulus and hardness of the specimen material. The method takes into account the elastic recovery along the direction of the short axis of the residual impression as the indenter is removed. If elastic recovery is not accounted for, the elastic modulus and hardness are overestimated by an amount that depends on the ratio of E/H of the specimen material. The new method of analysis expresses the elastic recovery of the short diagonal of the residual impression into an equivalent face angle for one side of the Knoop indenter. Conventional methods of analysis using this corrected angle provide results for modulus and hardness that are consistent with those obtained with other types of indenters.


Sign in / Sign up

Export Citation Format

Share Document