scholarly journals A Hybrid RANS-LES Computational Fluid Dynamics Simulation of an FDA Medical device benchmark

Mechanika ◽  
2019 ◽  
Vol 25 (4) ◽  
pp. 291-298
Author(s):  
Primož Drešar ◽  
Jožef Duhovnik

Computational fluid dynamics (CFD) is a valuable tool that complements experimental data in the development of medical devices. The reliability of CFD still presents an issue and for that reason, no standardized approaches are currently available. The United States Food and Drug Administration (FDA) has initiated the development of a program for CFD validation, and has presented an idealized nozzle benchmark model. In this study, a nozzle flow with sudden expansion has been simulated using advanced RANS-LES turbulence models. Such models partially resolve the flow and are cheaper in computer resources and time in comparison to the Large Eddy Simulation (LES). Furthermore, they are more accurate than standard Reynolds-averaged Navier-Stokes (RANS) models. A collection of hybrid turbulence models has been investigated: Detached Eddy Simulation (DES), Stress Blended Eddy Simulation (SBES), and Scale Adaptive Simulation (SAS), and compared to a standard RANS Shear Stress Transport (SST) model. Subsequently, all models were validated by experimental results already published by different research groups. Particle Image Velociometry (PIV) experiments were performed by inter-laboratory study, and the results are available online for numerical validation.  The flow conditions in this study are only restricted to a turbulence flow at a Reynolds number of Re =6500. Complementing the turbulence models investigation, two advection schemes were tested: high resolution (HR) and bounded central difference scheme (BCD). Among all advanced models the SBES model with BCD scheme has the best agreement with the experimental values.

2018 ◽  
Vol 42 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Edison H Caicedo ◽  
Muhammad S Virk

This article describes a multiphase computational fluid dynamics–based numerical study of the aeroacoustics response of symmetric and asymmetric wind turbine blade profiles in both normal and icing conditions. Three different turbulence models (Reynolds-averaged Navier–Stokes, detached eddy simulation, and large eddy simulation) have been used to make a comparison of numerical results with the experimental data, where a good agreement is found between numerical and experimental results. Detached eddy simulation turbulence model is found suitable for this study. Later, an extended computational fluid dynamics–based aeroacoustics parametric study is carried out for both normal (clean) and iced airfoils, where the results indicate a significant change in sound levels for iced profiles as compared to clean.


Author(s):  
J. Johansen ◽  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The Detached-Eddy Simulation model implemented in the computational fluid dynamics code, EllipSys3D, is applied on the flow around the NREL Phase-VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase-VI unsteady experiment. The Detached-Eddy Simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds Averaged Navier-Stokes method in the boundary layer with a Large Eddy Simulation in the free shear flow. The present study focuses on static and dynamic stall regions highly relevant for stall regulated wind turbines. Computations do predict force coefficients and pressure distributions fairly good and results using Detached-Eddy Simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds Averaged Navier-Stokes turbulence models, but no particular improvements are seen on the global blade characteristics.


2020 ◽  
Vol 11 (4) ◽  
pp. 1201-1209
Author(s):  
Ismail ◽  
Johanis John ◽  
Erlanda A. Pane ◽  
Budhi M. Suyitno ◽  
Gama H.N.N. Rahayu ◽  
...  

2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Eduard Amromin

Various computational fluid dynamics (CFD) models employed for cavitating flows are substantially based on semi-empirical assumptions about cavitation forms and liquid flows around cavitating bodies. Therefore, the model applicability must be validated with experimental data. The stages of validation of the models are analyzed here with data on cavitating hydrofoils and axisymmetric bodies in water. Results of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulation (LES), detached-eddy simulation (DES), and viscous-inviscid interaction methods are compared. The necessity of simultaneous validation of several flow parameters (as cavitation inception number and location of the appearing cavity) is pointed out. Typical uncertainties in water tunnel model test data (water quality, simplified account of wall effect) and possibilities to take them into account are also discussed. The provided comparison with experimental data manifests the impossibility to describe initial stages of cavitating flows using any single model and importance of employment of a combination of models for both the cavitation zones and the flow outside of cavities.


Author(s):  
Juraj Králik

Abstract Aim of this contribution is to provide insight view into analysis focused on obtaining external pressure coefficients on isolated two storey low-rise building with 15° elevation gable roof using Computer Fluid Dynamics simulation and these are compared to values that offering Eurocodes. Final Volume Model consisting of polyhedral mesh will be used for analysis with two different turbulence models. Mesh was created with respect to y+ parameter, where desired value was below one which leads us to fine mesh type. Secondary aim of this contribution is to compare performance of selected turbulence models. For this purpose were chosen Detached Eddy Simulation and Large Eddy Simulation which are part of the Scale Resolving Simulation turbulence models.


2021 ◽  
Author(s):  
Majid Bayatian ◽  
Khosro Ashrafi ◽  
Zahra Amiri ◽  
Elahe Jafari

Abstract Viruses can be transmitted in indoor environments. Important factors in Indoor Air Quality (IAQ) are air velocity, relative humidity, temperature, and airflow pattern and Computational fluid dynamics (CFD) can use for IAQ assessment. The objective of this study is to CFD simulation in the living room to the prediction of the air pattern and air velocity. A computational fluid dynamic model was applied for airflow pattern and air velocity simulation. For simulation, GAMBIT, FLUENT, and CFD post software were used as preprocessing, processing, and post-processing, respectively. CFD validation was carried out by comparing the computed data with the experimental measurements. The final mesh number was set to 1,416,884 elementary cells and SIMPLEC algorithm was used for pressure-velocity coupling. PERSTO, and QUIK schemes have been used for the pressure terms, and the other variables, respectively. Simulations were carried out in ACH equals 3, 6 and 8 in four lateral walls. The maximum error and root mean square error from the air velocity were 14% and 0.10, respectively. Terminal settling velocity and relaxation time were equal to 0.302 ×10− 2 m/s and 0.0308 ×10− 2 s for 10 µm diameter particles, respectively. The stopping distance was 0.0089m and 0.011m for breathing and talking, respectively. The maximum of mean air velocity is in scenario 4 with ACH = 8 that mean air velocity is equal to 0.31 in 1.1m height, respectively. The results of this study showed that avoiding family gatherings is necessary for exposure control and suitable airflow and pattern can be improving indoor air conditions.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 524 ◽  
Author(s):  
Khezri ◽  
Ghani ◽  
Masoudi Soltani ◽  
Biak ◽  
RobiahYunus ◽  
...  

In this work, we employed a computational fluid dynamics (CFD)-based model with a Eulerian multiphase approach to simulate the fluidization hydrodynamics in biomass gasification processes. Air was used as the gasifying/fluidizing agent and entered the gasifier at the bottom which subsequently fluidized the solid particles inside the reactor column. The momentum exchange related to the gas-phase was simulated by considering various viscous models (i.e., laminar and turbulence models of the re-normalisation group (RNG), k-ε and k-ω). The pressure drop gradient obtained by employing each viscous model was plotted for different superficial velocities and compared with the experimental data for validation. The turbulent model of RNG k-Ɛ was found to best represent the actual process. We also studied the effect of air distributor plates with different pore diameters (2, 3 and 5 mm) on the momentum of the fluidizing fluid. The plate with 3-mm pores showed larger turbulent viscosities above the surface. The effects of drag models (Syamlal–O’Brien, Gidaspow and energy minimum multi-scale method (EMMS) on the bed’s pressure drop as well as on the volume fractions of the solid particles were investigated. The Syamlal–O’Brien model was found to forecast bed pressure drops most consistently, with the pressure drops recorded throughout the experimental process. The formation of bubbles and their motion along the gasifier height in the presence of the turbulent flow was seen to follow a different pattern from with the laminar flow.


2016 ◽  
Vol 41 (1) ◽  
pp. 43-54
Author(s):  
AZ Dhunny ◽  
F Toja-Silva ◽  
C Peralta ◽  
MR Lollchund ◽  
SDDV Rughooputh

In this article, results obtained from two computational fluid dynamics solvers, WindSim and OpenFOAM, have been compared for the wind flow around the University of Mauritius’ campus for different wind directions, and a reference incident wind speed at diverse height above ground level. A grid resolution study is performed for both software and the mean differences of the two solvers with multiple turbulence models (standard k-ε, k-ε with Yap correction, and renormalization group k-ε) are analyzed with onsite measured data. The article concludes that the best results for the computational fluid dynamics simulation of the wind flow around buildings are obtained using OpenFOAM with k-ε turbulence model including Yap correction.


Sign in / Sign up

Export Citation Format

Share Document