A post-processing module based on Cressman’s analysis to improve the Wind Energy Simulation Toolkit mapping system

2018 ◽  
Vol 43 (3) ◽  
pp. 277-298
Author(s):  
Yoandy Alonso ◽  
Yosvany Martinez ◽  
Alfredo Roque ◽  
Wei Yu ◽  
Israel Borrajero

In this work, a post-processing module based on Cressman’s method of objective analysis is added to the Wind Energy Simulation Toolkit in order to improve the accuracy of the numerical wind atlas of Cuba. Mean wind speed surface observations at 35 meteorological stations and mean wind speed observations at 10, 30, 50, and 100 m height above ground level collected at a network of 58 observation towers are assimilated in the Cressman analysis. Furthermore, the 3-year numerical wind atlas generated for the same period of time is considered as the first guess for the Cressman method. A new wind atlas of Cuba is generated and verified using observation records at 32 meteorological stations and 10 observation towers distributed over the country. In addition, the capability of the new post-processing scheme to adding information on the temporal variability of the wind resource is explored.

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Alhassan A. Teyabeen ◽  
Fathi R. Akkari ◽  
Ali E. Jwaid ◽  
Ashraf Zaghwan ◽  
Rehab Abodelah

To assess the wind energy potential at any site, the wind power density should be estimated; it evaluates the wind resource and indicates the amount of available wind energy. The purpose of this study is to estimate the monthly and annual wind power density based on the Weibull distribution using wind speed data collected in Zwara, Libya during 2007. The wind date are measured at the three hub heights of 10m, 30m, and 50m above ground level, and recorded every 10 minutes. The analysis showed that the annual average wind speed are 4.51, 5.86, 6.26 m/s for the respective mentioned heights. The average annual wind power densities at the mentioned heights were 113.71, 204.19, 243.48 , respectively.


2015 ◽  
Vol 17 (2) ◽  
pp. 418-425

<p>Today&#39;s world requires a change in how the use of different types of energy. With declining reserves of fossil fuels for renewable energies is of course the best alternative. Among the renewable energy from the wind can be considered one of the best forms of energy can be introduced. Accordingly, most countries are trying to identify areas with potential to benefit from this resource.</p> <p>The aim of this study was to assess the potential wind power in Sahand station of Iran country. Hourly measured long term wind speed data of Sahand during the period of 2000-2013 have been statistically analyzed. In this study the wind speed frequency distribution of location was found by using Weibull distribution function. The wind energy potential of the location has been studied based on the Weibull mode. The results of this study show that mean wind speed measured at 10 m above ground level is determined as 5.16 m/s for the studied period. This speed increases by, respectively, 34.78 % and 41.21 %, when it is extrapolated to 40 and 60 m hub height.</p> <div> <p>Long term seasonal wind speeds were found to be relatively higher during the period from January to September. At the other hand, higher wind speeds were observed between the period between 06:00 and 18:00 in the day. These periods feet well with annual and daily periods of maximum demand of electricity, respectively.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
pp. 0309524X2110445
Author(s):  
Marwa M Ibrahim

This research represents the first wind energy potential assessment that covers major provinces in Egypt. The paper investigates a realistic study technically and economically of wind energy as a talented renewable source for electricity production of various regions in Egypt. More accurate prediction and measurement of wind speed and direction allow wind plants to supply clean, renewable power to businesses, and homeowners at lower costs. Wind resource assessments must be precise in order for wind farms to be built successfully. Wind resource assessments have been carried out in this study. Wind resources evaluation and precise assessment of wind capacity for the four selected sites in Egypt’s provinces from 2017 for 3 years at 10, 50 m above ground level (AGL): Hurgada, Aswan, Alexandria, and the capital of Egypt (Cairo). The wind speed data is taken from NASA for different sites in Egypt. The average annual wind speed was estimated to be 4.44, 4.31, 4.91, and 3.9 m/s at 10 m height, respectively. The economical factors such as NPC and COE in the selected regions are estimated. The optimum location for wind assessment in Egypt is Alexandria which gives maximum wind speed, maximum annual energy, minimum levelized cost of energy, and highest capacity factor. The proposed wind assessment will generated 20,1729 kWh of electricity per year and electricity generation cost per kWh/$ is 0.0818844. This planned cost of wind electric generation is compatible with the local electricity tariff. Also, Feasibility of Construction small wind turbine in this site is investigated. In addition, a criterion of wind farm site selection is presented here with Environmental Impact Assessment (EIA) study through Birds Migration aspect that decreases with increase turbine tower length and short blade length. Through reducing Egypt’s domestic fossil fuel consumption, this work will potentially save tons of carbon emissions each year.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3197 ◽  
Author(s):  
Luis López-Manrique ◽  
E. Macias-Melo ◽  
O. May Tzuc ◽  
A. Bassam ◽  
K. Aguilar-Castro ◽  
...  

This work studies the characteristics of the wind resource for a location in the north zone of Tehuantepec isthmus. The study was conducted using climatic data from Cuauhtemotzin, Mexico, measured at different altitudes above the ground level. The measured data allowed establishing the profile of wind speeds as well as the analysis of its availability. Analysis results conclude that the behavior of the wind speed presents a bimodal distribution with dominant northeast wind direction (wind flow of sea–land). In addition, the area was identified as feasible for the use of low speed power wind turbines. On the other hand, the application of a new approach for very short-term wind speed forecast (10 min) applying multi-gene genetic programming and global sensitivity analysis is also presented. Using a computational methodology, an exogenous time series with fast computation time and good accuracy was developed for the forecast of the wind speed. The results presented in this work complement the panorama for the evaluation of the resource in an area recognized worldwide for its vast potential for wind power.


2020 ◽  
pp. 0309524X2092540
Author(s):  
Addisu Dagne Zegeye

Although Ethiopia does not have significant fossil fuel resource, it is endowed with a huge amount of renewable energy resources such as hydro, wind, geothermal, and solar power. However, only a small portion of these resources has been utilized so far and less than 30% of the nation’s population has access to electricity. The wind energy potential of the country is estimated to be up to 10 GW. Yet less than 5% of this potential is developed so far. One of the reasons for this low utilization of wind energy in Ethiopia is the absence of a reliable and accurate wind atlas and resource maps. Development of reliable and accurate wind atlas and resource maps helps to identify candidate sites for wind energy applications and facilitates the planning and implementation of wind energy projects. The main purpose of this research is to assess the wind energy potential and model wind farm in the Mossobo-Harena site of North Ethiopia. In this research, wind data collected for 2 years from Mossobo-Harena site meteorological station were analyzed using different statistical software to evaluate the wind energy potential of the area. Average wind speed and power density, distribution of the wind, prevailing direction, turbulence intensity, and wind shear profile of the site were determined. Wind Atlas Analysis and Application Program was used to generate the generalized wind climate of the area and develop resource maps. Wind farm layout and preliminary turbine micro-sitting were done by taking various factors into consideration. The IEC wind turbine class of the site was determined and an appropriate wind turbine for the study area wind climate was selected and the net annual energy production and capacity factor of the wind farm were determined. The measured data analysis conducted indicates that the mean wind speed at 10 and 40 m above the ground level is 5.12 and 6.41 m/s, respectively, at measuring site. The measuring site’s mean power density was determined to be 138.55 and 276.52 W/m2 at 10 and 40 m above the ground level, respectively. The prevailing wind direction in the site is from east to south east where about 60% of the wind was recorded. The resource grid maps developed by Wind Atlas Analysis and Application Program on a 10 km × 10 km area at 50 m above the ground level indicate that the selected study area has a mean wind speed of 5.58 m/s and a mean power density of 146 W/m2. The average turbulence intensity of the site was found to be 0.136 at 40 m which indicates that the site has a moderate turbulence level. According to the resource assessment done, the area is classified as a wind Class IIIB site. A 2-MW rated power ENERCON E-82 E2 wind turbine which is an IEC Class IIB turbine with 82 m rotor diameter and 98 m hub height was selected for estimation of annual energy production on the proposed wind farm. 88 ENERCON E-82 E2 wind turbines were properly sited in the wind farm with recommended spacing between the turbines so as to reduce the wake loss. The rated power of the wind farm is 180.4 MW and the net annual energy production and capacity factor of the proposed wind farm were determined to be 434.315 GWh and 27.48% after considering various losses in the wind farm.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Liu ◽  
Katelyn B. Costa ◽  
Lian Xie ◽  
Fredrick H. M. Semazzi

By using a limited-area model (LAM) in combination with the scale-selective data assimilation (SSDA) approach, wind energy resources in the contiguous United States (CONUS) were downscaled from IPCC CCSM3 global model projections for both current and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind speed is expected to increase from 0.1 to 0.2 m s−1over the Great Plains, Northern Great Lakes Region, and Southwestern United States located southwest of the Rocky Mountains. When projecting into the 2090s from current climate, there is an overall increase in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase between 0 and 0.1 m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to 2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4 m s−1.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3986 ◽  
Author(s):  
Florin Onea ◽  
Andrés Ruiz ◽  
Eugen Rusu

The main objective of the present work is to provide a comprehensive picture of the wind conditions in the Spanish continental nearshore considering a state-of-the-art wind dataset. In order to do this, the ERA5 wind data, covering the 20-year time interval from 1999 to 2018, was processed and evaluated. ERA stands for ’ECMWF Re-Analysis’ and refers to a series of research projects at ECMWF (European Centre for Medium-Range Weather Forecasts) which produced various datasets. In addition to the analysis of the wind resources (reported for a 100 m height), the performances of several wind turbines, ranging from 3 to 9.5 MW, were evaluated. From the analysis of the spatial maps it was observed that the Northern part of this region presents significant wind resources, the mean wind speed values exceeding 9 m/s in some locations. On the other hand, in regard to the Southern sector, more energetic conditions are visible close to the Strait of Gibraltar and to the Gulf of Lion. Nevertheless, from the analysis of the data corresponding to these two Southern nearshore points it was observed that the average wind speed was lower than 8 m/s in both summer and winter months. Regarding the considered wind turbines, the capacity factor did in general not exceed 20%—however, we did observe some peaks that could reach to 30%. Finally, it can be highlighted that the Northern part of the Spanish continental nearshore is significant from the perspective of extracting offshore wind energy, especially considering the technologies based on floating platforms. Furthermore, because of the clear synergy between wind and wave energy, which are characteristic to this coastal environment, an important conclusion of the present work is that the implementation of joint wind–wave projects might be effective in the Northwestern side of the Iberian nearshore.


2014 ◽  
Vol 1070-1072 ◽  
pp. 284-290
Author(s):  
Yao Zong Zhang ◽  
Bo Zhang ◽  
Yan Yan Liu

Based on wind speed data of 13 meteorological stations in 1958-2012,Mann-Kendall nonparametric test methods was been used to study on wind speed changes in Hexi Corridor.Spatial and temporal characteristics of seasonal and monthly wind speed changes was examined. (1) The maximum wind speed appeared in the higher elevations of study area, such as Wushaoling and Mazongshan station. From east to west mean wind speed increased in Hexi Corridor.For nearly 50 years wind speed had showed decreasing trend. (2)In each season Spring with an maximum mean wind speed was 3.4m/s,the Summer mean wind speed was 2.9 m/s,Autumn mean wind speed was 2.6 m/s,the mean Winter wind speed was 2.8m/s.The seasonal wind speed mainly had decline trend, each station.has different characteristics trends (3) Mean wind speed in each month was greater than 2.5m/s,maximum monthly wind speed appeared in April was 3.5m/s,the minimum wind speed appeared in the September-October was 2.53m/s,the wind speed in March,April and May was greater than the November month,December,January.In addition to Mazongshan and Wushaoling,other station monthly wind speed showed a decreasing trend.Monthly mean wind speed in Jiuquan,Dingxin and Zhangye was slow decreasing trend.Anxi,Yumen wind decreasing trend were more obvious.(4)Wind decreasing trend will have a significant impact on wind energy, wind speed changes and wind energy should be evaluated in the future.


2008 ◽  
Vol 32 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Hanan Al Buflasa ◽  
David Infield ◽  
Simon Watson ◽  
Murray Thomson

The geographical distribution of wind speed (the wind atlas) for the kingdom of Bahrain is presented, based on measured data and on calculations undertaken using WAsP,. The data used were recorded by the Meteorological Directorate at a weather station situated at Bahrain International Airport, taken on an hourly basis for a period of time extended for ten years. These data indicate an annual mean wind speed of 4.6 m/s at 10 m height and mean Weibull scale and shape parameters C and k of 5.2 m/s and 1.9 respectively. At a typical wind turbine hub height of sixty metres, these values are extrapolated to 6.9 m/s, 7.8 m/s and 1.8 respectively, which suggests that the area has a good wind resource. The wind atlas shows that several locations in the less populated central and southern regions of the main island of the archipelago of Bahrain are potentially suitable for wind energy production.


Sign in / Sign up

Export Citation Format

Share Document