scholarly journals A novel, injury-free rodent model of vulnerability for assessment of acute and preventive therapies reveals temporal contributions of CGRP-receptor activation in migraine-like pain

Cephalalgia ◽  
2020 ◽  
pp. 033310242095979
Author(s):  
Caroline M Kopruszinski ◽  
Edita Navratilova ◽  
Juliana Swiokla ◽  
David W Dodick ◽  
Iain P Chessell ◽  
...  

Aim Development and characterization of a novel injury-free preclinical model of migraine-like pain allowing mechanistic assessment of both acute and preventive treatments. Methods A “two-hit” hyperalgesic priming strategy was used to induce vulnerability to a normally subthreshold challenge with umbellulone, a transient receptor potential ankyrin 1 (TRPA1) activator, in uninjured female and male C57BL/6 mice. Priming (i.e. the first hit) was induced by three consecutive daily episodes of restraint stress; repeated umbellulone was also evaluated for potential priming effects. Sixteen days after the first restraint stress, mice received inhalational umbellulone (i.e. the second hit) to elicit migraine-like pain. Medications currently used for acute or preventive migraine therapy including propranolol (a beta blocker) and sumatriptan (5HT1B/D agonist), as well as olcegepant, an experimental calcitonin gene related peptide (CGRP) receptor antagonist and nor-Binaltorphimine (nor-BNI), an experimental long-acting kappa opioid receptor (KOR) antagonist, were investigated for their efficacy to block priming and prevent or reverse umbellulone-induced allodynia in primed animals. To assess migraine-like pain, cutaneous allodynia was determined by responses to periorbital or hindpaw probing with von Frey filaments. Results Repeated restraint stress, but not umbellulone exposure, produced transient cutaneous allodynia that resolved within 16 d. Restraint stress produced long-lasting priming that persisted beyond 16 d, as demonstrated by reinstatement of cutaneous allodynia following inhalational umbellulone challenge. Pretreatment with propranolol or nor-BNI prior to restraint stress prevented both transient cutaneous allodynia and priming, demonstrated by a lack of umbellulone-induced cutaneous allodynia. Following establishment of restraint stress priming, olcegepant, but not propranolol or nor-BNI, prevented umbellulone-induced cutaneous allodynia. When administered 1 h after umbellulone, sumatriptan, but not olcegepant, reversed umbellulone-induced cutaneous allodynia in restraint stress-primed rats. Conclusion We have developed a novel injury-free model with translational relevance that can be used to study mechanisms relevant to migraine-like pain and to evaluate novel acute or preventive treatments. Restraint stress priming induced a state of vulnerability to a subthreshold stimulus that has been referred to as “latent sensitization”. The development of latent sensitization could be prevented by blockade of stress pathways with propranolol or with a kappa opioid receptor antagonist. Following establishment of latent sensitization, subthreshold stimulation with umbellulone reinstated cutaneous allodynia, likely from activation of meningeal TRPA1-expressing nociceptors. Accordingly, in restraint stress-primed animals, sumatriptan reversed umbellulone-induced cutaneous allodynia, supporting peripheral sites of action, while propranolol and nor-BNI were not effective. Surprisingly, olcegepant was effective in mice with latent sensitization when given prior to, but not after, umbellulone challenge, suggesting time-dependent contributions of calcitonin gene-related peptide receptor signaling in promoting migraine-like pain in this model. Activation of the calcitonin gene-related peptide receptor participates in initiating, but has a more limited role in maintaining, pain responses, supporting the efficacy of small molecule calcitonin gene-related peptide antagonists as preventive medications. Additionally, the effectiveness of sumatriptan in reversal of established pain thus suggests modulation of additional, non-calcitonin gene-related peptide receptor-mediated nociceptive mechanisms. Kappa opioid receptor antagonists may represent a novel preventive therapy for stress-related migraine.

2017 ◽  
Vol 52 (6) ◽  
pp. 406-407 ◽  
Author(s):  
Scot Walker

Migraine is a common disorder affecting 12% of the U.S. population. Prophylaxis is recommended for patients who experience frequent migraines. Because current drugs used for prophylaxis are not 100% effective and cause adverse effects that affect compliance, new strategies have been studied to prevent headaches. One new pharmacologic strategy is to use an inhibitor of the calcitonin gene-related peptide (CGRP). As a class, the CGRP receptor inhibitors have reduced monthly migraine days and are well tolerated. This article will briefly review CGRP inhibitors in development.


Cephalalgia ◽  
2020 ◽  
Vol 40 (14) ◽  
pp. 1535-1550
Author(s):  
Caroline M Kopruszinski ◽  
Peter Thornton ◽  
Joanne Arnold ◽  
Philip Newton ◽  
David Lowne ◽  
...  

Aim Migraine pain is thought to result from activation of meningeal nociceptors that might involve dural mast cell degranulation and release of proteases and pronociceptive mediators. Tryptase, the most abundant dural mast cell protease, has been demonstrated to stimulate dural mast cells, as well as trigeminal nociceptors by activating the protease activated receptor 2. Mast cell or neuronal protease activated receptors 2 may therefore represent a novel target for migraine treatment. In this study, we characterized and evaluated a novel protease activated receptor 2 monoclonal antibody as a preventive anti-migraine pain therapy in preclinical models. Methods Flow cytometry, immunocytochemistry, calcium imaging, Homogeneous Time Resolved Technology (HTRF) epitope competition assay and serum pharmacokinetic (PK) assay in rats were performed to confirm the activity, specificity and in vivo stability of PAR650097, a novel anti- protease activated receptor 2 monoclonal antibody. In vivo assessment was performed in female C57BL/6J mice by evaluation of PAR650097 in preventing cutaneous allodynia elicited by (a) supradural injection of the protease activated receptor 2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide trifluoroacetate (SLIGRL), or calcitonin gene-related (CGRP) peptide, and (b) induction of latent sensitization by priming with three daily episodes of restraint stress followed by challenge with a subthreshold inhalational exposure to umbellulone (UMB), a transient receptor potential ankyrin 1 (TRPA1) agonist. PAR650097 was administered as a pretreatment prior to the first restraint stress, umbellulone exposure, SLIGRL or calcitonin gene-related peptide injection. Additionally, fremanezumab, a calcitonin gene-related peptide antibody was administered as pre-treatment prior to supradural administration of calcitonin gene-related peptide or SLIGRL. Results In vitro, PAR650097 demonstrated rapid interaction with protease activated receptor 2, enabling it to fully inhibit protease-induced protease activated receptor 2 activation, in human and mouse cells, with high potency. Furthermore, PAR650097 was highly selective for protease activated receptor 2, demonstrating no affinity for protease activated receptor 1 protein and no functional effect on the activation of cellular protease activated receptor 1 with thrombin. In addition, PAR650097 had an acceptable PK profile, compatible with testing the effects of selective protease activated receptor 2 inhibition in vivo. In vivo, PAR650097 blocked cutaneous allodynia induced by either supradural SLIGRL or calcitonin gene-related peptide. Fremanezumab abolished cutaneous allodynia induced by supradural CGRP, and partially attenuated cutaneous allodynia induced by SLIGRL. Administration of PAR650097, before the first restraint stress episode, did not prevent the acute stress-induced cutaneous allodynia or restraint stress priming revealed by cutaneous allodynia induced by inhalational umbellulone. In contrast, PAR650097 prevented expression of cutaneous allodynia when given before the umbellulone challenge in restraint stress-primed animals. Conclusion PAR650097 specifically inhibits endogenously expressed protease activated receptor 2 in human and mouse cells with high potency. This antibody has an acceptable PK profile in rodents and effectively blocked SLIGR-induced cutaneous allodynia. PAR650097 additionally prevented cutaneous allodynia induced by supradural calcitonin gene-related peptide, indicating that the protease activated receptor 2 receptor is a downstream consequence of calcitonin gene-related peptide actions. Fremanezumab effectively blocked calcitonin gene-related peptide-induced cutaneous allodynia and only partially reduced cutaneous allodynia induced by a protease activated receptor 2 activator, suggesting both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine pain. While PAR650097 did not prevent stress-induced cutaneous allodynia or priming, it effectively prevented cutaneous allodynia induced by a TRPA1 agonist in animals with latent sensitization. Activation of protease activated receptor 2, therefore, contributes to both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine-like pain. Therapeutic targeting of protease activated receptor 2 receptors may represent an anti-migraine pain strategy with a potentially broad efficacy profile.


2012 ◽  
Vol 108 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Oana Covasala ◽  
Sören L. Stirn ◽  
Stephanie Albrecht ◽  
Roberto De Col ◽  
Karl Messlinger

Calcitonin gene-related peptide (CGRP) is regarded as a key mediator in the generation of primary headaches. CGRP receptor antagonists reduce migraine pain in clinical trials and spinal trigeminal activity in animal experiments. The site of CGRP receptor inhibition causing these effects is debated. Activation and inhibition of CGRP receptors in the trigeminal ganglion may influence the activity of trigeminal afferents and hence of spinal trigeminal neurons. In anesthetized rats extracellular activity was recorded from neurons with meningeal afferent input in the spinal trigeminal nucleus caudalis. Mechanical stimuli were applied at regular intervals to receptive fields located in the exposed cranial dura mater. α-CGRP (10−5 M), the CGRP receptor antagonist olcegepant (10−3 M), or vehicle was injected through the infraorbital canal into the trigeminal ganglion. The injection of volumes caused transient discharges, but vehicle, CGRP, or olcegepant injection was not followed by significant changes in ongoing or mechanically evoked activity. In animals pretreated intravenously with the nitric oxide donor glyceryl trinitrate (GTN, 250 μg/kg) the mechanically evoked activity decreased after injection of CGRP and increased after injection of olcegepant. In conclusion, the activity of spinal trigeminal neurons with meningeal afferent input is normally not controlled by CGRP receptor activation or inhibition in the trigeminal ganglion. CGRP receptors in the trigeminal ganglion may influence neuronal activity evoked by mechanical stimulation of meningeal afferents only after pretreatment with GTN. Since it has previously been shown that olcegepant applied to the cranial dura mater is ineffective, trigeminal activity driven by meningeal afferent input is more likely to be controlled by CGRP receptors located centrally to the trigeminal ganglion.


2012 ◽  
Vol 22 (14) ◽  
pp. 4723-4727 ◽  
Author(s):  
Xiaojun Han ◽  
Rita L. Civiello ◽  
Charles M. Conway ◽  
Deborah A. Cook ◽  
Carl D. Davis ◽  
...  

Author(s):  
S. Padmaja ◽  
J. Mohan

Migraine is a mysterious disorder characterized by pulsating head ache, which is actually characterized to one side and comes in attacks which will be lasting for about 3-48 hours and can be associated with nausea,vomiting,sensitivity to sound,flashes of light,vertigoand diarrhoea [1]. Most of the drugs which are in current use for actue migraine like triptans, treats the disorder symptomatically. A novel group of drugs has been in research for the migraine which treats the disorder pathologically. Calcitonin gene – related peptide (CGRP) has a major role in the pathophysiology of the disorder and hence CGRP receptor antagonist, known as Gepants are in the research process [2]. Gepants are being studied for the efficacy of treating acute migraine [2]. This article will be a review article about the drug – Ubrogepant, which is approved for treatment of migraine with acute attacks in adults [3].


Sign in / Sign up

Export Citation Format

Share Document