Sequential Kinking and Flared Energy-Absorbing End Terminals for Midwest Guardrail System

Author(s):  
Robert W. Bielenberg ◽  
Dean L. Sicking ◽  
John R. Rohde ◽  
John D. Reid

The Midwest guardrail system (MGS), developed at the Midwest Roadside Safety Facility, was designed to improve the performance of traditional strong-post, W-beam guardrail systems. These improvements include decreasing the potential for rollover with high center-of-gravity vehicles, decreasing the potential for rail rupture at the splice locations, and decreasing the sensitivity of the system to the installation rail height. However, safe guardrail termination options for the MGS must be developed before the system can be implemented on the roadside. Two end terminal designs, the sequential kinking terminal (SKT) and the flared energy-absorbing terminal (FLEAT), were partially redesigned and crash tested in conjunction with the MGS according to NCHRP Report 350 criteria. The new versions of the terminals were named the SKT-MGS and the FLEAT-MGS to designate them for use with the MGS. To evaluate the performance of the terminals with the MGS, a series of four full-scale crash tests was conducted: two redirection tests, NCHRP Report 350 Test Designations 3–34 and 3–35, and two head-on impacts, Test Designations 3–30 and 3–31. The results from the four crash tests were found to meet all relevant safety requirements. The SKT-MGS and FLEAT-MGS end terminals are the first successfully tested end terminals for use with the MGS.

Author(s):  
John D. Reid ◽  
Ronald K. Faller ◽  
Jim C. Holloway ◽  
John R. Rohde ◽  
Dean L. Sicking

For many years, containment for errant racing vehicles traveling on oval speedways has been provided through rigid, concrete containment walls placed around the exterior of the track. However, accident experience has shown that serious injuries and fatalities may occur through vehicular impacts into these nondeformable barriers. Because of these injuries, the Indy Racing League and the Indianapolis Motor Speedway, later joined by the National Association for Stock Car Auto Racing (NASCAR), sponsored the development of a new barrier system by the Midwest Roadside Safety Facility at the University of Nebraska–Lincoln to improve the safety of drivers participating in automobile racing events. Several barrier prototypes were investigated and evaluated using both static and dynamic component testing, computer simulation modeling with LS-DYNA (a nonlinear finite element analysis code), and 20 full-scale vehicle crash tests. The full-scale crash testing program included bogie vehicles, small cars, and a full-size sedan, as well as Indy Racing League open-wheeled cars and NASCAR Winston Cup cars. A combination steel tube skin and foam energy-absorbing barrier system, referred to as the SAFER (steel and foam energy reduction) barrier, was successfully developed. Subsequently, the SAFER barrier was installed at the Indianapolis Motor Speedway in advance of the running of the 2002 Indianapolis 500 race. From the results of the laboratory testing program as well as analysis of the accidents into the SAFER barrier occurring during practice, qualification, and the race, the SAFER barrier has been shown to provide improved safety for drivers impacting the outer walls.


2012 ◽  
Vol 490-495 ◽  
pp. 2676-2680
Author(s):  
Hong Jun Cui ◽  
Xiao Jing Shen ◽  
Yu Liu ◽  
Xi Xin Sun

Pave overlay to the freeway repeatedly causes the guardrail’s height lower and lower, which seriously influences its performance in protection and safety. The paper aims to work out a height-adjustable W-beam guardrail which is economic, feasible and safe to solve the shortage in barrier’s height causes from paving overlays by computer simulation tests and full-scale crash tests, which will improve the roadside safety of the guardrail and save the reconstruction cost.


Author(s):  
Brian G. Pfeifer ◽  
Dean L. Sicking

A crashworthy terminal for strong-post W-beam guardrail systems was developed at the Midwest Roadside Safety Facility at the University of Nebraska—Lincoln. The terminal incorporates an impact head that is placed over the end of a tangent section of W-beam rail. The impact head is designed to be pushed down the rail and to dissipate impact energy by cutting the W-beam along the peaks and valley to produce four essentially flat strips of steel. These flat strips are then deflected out of the path of the vehicle, striking the end of the rail. Static and dynamic component tests as well as full-scale developmental crash tests conducted during the development of this system are described. Finally, the results of the three full-scale compliance crash tests are presented and discussed. The metal-cutting guardrail terminal was shown to meet NCHRP Report 230 safety performance standards.


Safety ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 48
Author(s):  
Murat Büyük ◽  
Ali Atahan ◽  
Kenan Kurucuoğlu

Crash cushions are designed to gradually absorb the kinetic energy of an impacting vehicle and bring it to a controlled stop within an acceptable distance while maintaining a limited amount of deceleration on the occupants. These cushions are used to protect errant vehicles from hitting rigid objects, such as poles and barriers located at exit locations on roads. Impact performance evaluation of crash cushions are attained according to an EN 1317-3 standard based on various speed limits and impact angles. Crash cushions can be designed to absorb the energy of an impacting vehicle by using different material deformation mechanisms, such as metal plasticity supported by airbag folding or damping. In this study, a new crash cushion system, called the ulukur crash cushion (UCC), is developed by using linear, low-density polyethylene (LLDPE) containers supported by embedded plastic energy-absorbing tubes as dampers. Steel cables are used to provide anchorage to the design. The crashworthiness of the system was evaluated both numerically and experimentally. The finite element model of the design was developed and solved using LS-DYNA (971, LSTC, Livermore, CA, USA), in which the impact performance was evaluated considering the EN 1317 standard. Following the simulations, full-scale crash tests were performed to determine the performance of the design in containing and redirecting the impacting vehicle. Both the simulations and crash tests showed acceptable agreement. Further crash tests are planned to fully evaluate the crashworthiness of the new crash cushion system.


Author(s):  
Dean L. Sicking ◽  
John D. Reid ◽  
John R. Rohde

A revised guardrail system has been developed that should provide greatly improved performance for high-center-of-gravity light truck vehicles. The barrier incorporates W-beam guardrail and standard W6×9 steel posts. Primary changes to the design include raising the standard rail height to 635 mm, moving rail splices to midspan between posts, increasing blockout size, and increasing the size of post bolt slots. All of these changes were designed to improve the barrier’s performance with high-center-of-gravity vehicles. One full-scale crash test was conducted to verify that the guardrail would perform adequately with mini-sized automobiles when raised to 660 mm to the center of the rail. This test proved that the barrier can provide satisfactory performance when mounted at heights ranging from 550 mm (standard guardrail height) up to 660 mm. Hence, the new guardrail design provides approximately 110 mm (4.4 in.) of mounting height tolerance. When installed at the nominal mounting height of 635 mm, a 75-mm pavement overlay could be applied to the roadway without requiring adjustments to the barrier’s height.


Author(s):  
Malcolm H. Ray ◽  
Jeffery A. Hopp

Developing safe and effective guardrail terminals has been a high priority for roadside safety researchers for several decades. Numerous full-scale crash tests have been performed, and many new types of terminals have been developed. Results are presented of an in-service performance evaluation of two popular guardrail terminals—the breakaway cable terminal and the modified eccentric loader terminal. The data were collected in parts of Iowa and North Carolina during a 24-month period from 1997 to 1999. The collision characteristics, occupant injuries, and barrier damage were evaluated to determine collision performance.


Author(s):  
Nauman M. Sheikh ◽  
Dean C. Alberson ◽  
D. Lance Bullard

The hybrid energy-absorbing reusable terminal (HEART) is a newly developed crash cushion or end terminal to be used in highway safety applications to mitigate injuries to occupants of errant vehicles. HEART is composed of corrugated plates of high–molecular weight, high-density polyethylene (HMW-HDPE) supported on steel diaphragms that slide on a fixed rail. Kinetic energy from errant vehicles is converted to other energy forms through folding and deformation of the HMW-HDPE material. Many previous designs utilized plastic or permanent deformation of plastics or steels to accomplish this goal. However, HEART is a combination of plastic and steel that forms a largely self-restoring and largely reusable crash cushion. Consequently, HEART has a major life-cycle cost advantage over conventional crash cushion designs. HEART was developed through extensive use of finite element analysis with LS-DYNA. The simulation approach adopted for the development of HEART, construction details, and a description and results of crash tests performed so far to evaluate its performance are presented. Also discussed is some of the follow-up work currently under way for approval of HEART by FHWA as an acceptable crash cushion for use on the National Highway System.


1998 ◽  
Vol 1647 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Brian G. Pfeifer ◽  
Dean L. Sicking

An energy-absorbing guardrail terminal was developed at the Midwest Roadside Safety Facility in 1994 that met the safety criteria set forth in NCHRP Report 230. This terminal, known as the beam-eating steel terminal, or BEST, relies on the cutting of steel W-beams to absorb the energy of impacting vehicles. Since that time, a new set of safety standards has been developed to replace those set forth in NCHRP Report 230. These new criteria are published in NCHRP Report 350, with the most significant change being the replacement of the 2041-kg (4,500-lb) sedan test vehicle with a 2000-kg (0.75-ton) pickup. To ensure that the BEST system would perform well under these new, and more stringent, criteria, the system was subjected to the matrix of full-scale vehicle crash tests required by NCHRP Report 350. Several design changes were made to the terminal system during this development to improve the performance of the system. The results of this successful program are reported.


Author(s):  
Mojdeh Asadollahi Pajouh ◽  
Karla Lechtenberg ◽  
Ronald Faller ◽  
Tewodros Yosef

Trailing-end guardrail anchorage systems are widely used by most state departments of transportation (DOTs) and generally consist of simple adaptations of crashworthy end terminals. The safety performance and structural capacity of these trailing-end anchorage systems, when reverse-direction impacts occur near the end, is imperative in crashworthiness of guardrail systems. In 2013, a non-proprietary trailing-end anchorage system with a modified breakaway cable terminal (BCT) was developed by the Midwest Roadside Safety Facility (MwRSF) for the Midwest Guardrail System (MGS). Although this trailing-end guardrail anchorage system adequately met the Manual for Assessing Safety Hardware (MASH) TL-3 safety requirements, the use of two breakaway wood posts was deemed by some users to have several drawbacks. Thus, there was a critical need to develop a non-wood option to anchor the downstream end of the W-beam guardrail system, which led to the need to develop a steel-post trailing-end guardrail anchorage system for use with the MGS. Following the design and component testing of such a system, two full-scale crash tests were performed according to the MASH 2016 test designation nos. 3-37a and 3-37b. In the first test, a 2270P pickup truck struck the guardrail system and was adequately contained and redirected. In the second test, an 1100C small car struck the barrier and safely gated through the barrier. Both tests were deemed acceptable according to TL-3 safety criteria in MASH 2016. Recommendations are provided for the installation of a steel-post trailing-end guardrail anchorage system when used in combination with MGS.


Sign in / Sign up

Export Citation Format

Share Document