roadside safety
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Suliman Gargoum ◽  
Lloyd Karsten ◽  
Karim El-Basyouny ◽  
Xinyu Chen

Fatalities and serious injuries still represent a significant portion of run-off-the-road (ROR) collisions on highways in North America. In order to address this issue and design safer and more forgiving roadside areas, more empirical evidence is required to understand the association between roadside elements and safety. The inability to gather that evidence has been attributed in many cases to limitations in data collection and data fusion capabilities. To help overcome such issues, this paper proposes using LiDAR datasets to extract the information required to analyze factors contributing to the severity of ROR collisions on a localized collision level. Specifically, the paper proposes a new method for extracting pole-like objects and tree canopies. Information about other roadside assets, including signposts, alignment attributes, and side slopes is also extracted from the LiDAR scans in a fully automated manner. The extracted information is then attached to individual collisions to perform a localized assessment. Logistic regression is then used to explore links between the extracted features and the severity of fixed-object collisions. The analysis is conducted on 80 km of roads from 10 different highways in Alberta, Canada. The results show that roadside attributes vary significantly for the different collisions along the 80 km analyzed, indicating the importance of utilizing LiDAR to extract such features on a disaggregate collision level. The regression results show that the steepness of side slopes and the offset of roadside objects had the most significant impacts on the severity of fixed-object collisions.


Author(s):  
Hong Yi ◽  
Chris Bizon ◽  
David Borland ◽  
Matthew Watson ◽  
Matthew Satusky ◽  
...  

Author(s):  
Mojdeh Asadollahi Pajouh ◽  
Karla Lechtenberg ◽  
Ronald Faller ◽  
Tewodros Yosef

Trailing-end guardrail anchorage systems are widely used by most state departments of transportation (DOTs) and generally consist of simple adaptations of crashworthy end terminals. The safety performance and structural capacity of these trailing-end anchorage systems, when reverse-direction impacts occur near the end, is imperative in crashworthiness of guardrail systems. In 2013, a non-proprietary trailing-end anchorage system with a modified breakaway cable terminal (BCT) was developed by the Midwest Roadside Safety Facility (MwRSF) for the Midwest Guardrail System (MGS). Although this trailing-end guardrail anchorage system adequately met the Manual for Assessing Safety Hardware (MASH) TL-3 safety requirements, the use of two breakaway wood posts was deemed by some users to have several drawbacks. Thus, there was a critical need to develop a non-wood option to anchor the downstream end of the W-beam guardrail system, which led to the need to develop a steel-post trailing-end guardrail anchorage system for use with the MGS. Following the design and component testing of such a system, two full-scale crash tests were performed according to the MASH 2016 test designation nos. 3-37a and 3-37b. In the first test, a 2270P pickup truck struck the guardrail system and was adequately contained and redirected. In the second test, an 1100C small car struck the barrier and safely gated through the barrier. Both tests were deemed acceptable according to TL-3 safety criteria in MASH 2016. Recommendations are provided for the installation of a steel-post trailing-end guardrail anchorage system when used in combination with MGS.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Guozhu Cheng ◽  
Rui Cheng ◽  
Yulong Pei ◽  
Juan Han

Frequent and serious traffic accidents have become a focal issue because they hinder the sustainable development of society. In China, roadside accidents account for 40% of fatalities resulting from traffic accidents. Roadside safety has become an important issue of traffic management departments worldwide, and performing research on roadside safety contributes to improving the level of road safety and reducing the number of traffic accidents and fatalities. By systematically sorting a large number of relevant studies, this paper analyzed the current development trends of roadside safety in terms of three aspects (i.e., the year of publication, the country of publication, and the source of publication) and then summarized the research status, existing gaps, and future development directions of roadside safety in terms of three aspects: the frequency of roadside accidents, the severity of roadside accidents, and the practice of roadside safety design. This paper reviewed the different prediction methods and evaluation models for the frequency and severity of roadside accidents. According to the number of times mentioned in the literature, the first five significant risk factors that cause frequent roadside accidents are small-radius curves, heavy traffic, objects adjacent to the lane (such as poles and trees), narrow lanes, and narrow shoulders, and the first five significant risk factors that cause fatal roadside accidents are driver age ≤25 or ≥65, alcohol, speeding, failure to use seat belts, and heavy trucks. Future research on the frequency and severity of roadside accidents should focus on quantitatively analyzing the probability of roadside accidents and occupant injury risk and developing methods for identifying roadside accident blackspots. For roadside safety design, roadside clear zones and safety slopes should be precisely quantified based on a cost-benefit analysis in future studies.


Author(s):  
Hitesh Chawla ◽  
Megat-Usamah Megat-Johari ◽  
Peter T. Savolainen ◽  
Christopher M. Day

The objectives of this study were to assess the in-service safety performance of roadside culverts and evaluate the potential impacts of installing various safety treatments to mitigate the severity of culvert-involved crashes. Such crashes were identified using standard fields on police crash report forms, as well as through a review of pertinent keywords from the narrative section of these forms. These crashes were then linked to the nearest cross-drainage culvert, which was associated with the nearest road segment. A negative binomial regression model was then estimated to discern how the risk of culvert-involved crashes varied as a function of annual average daily traffic, speed limit, number of travel lanes, and culvert size and offset. The second stage of the analysis involved the use of the Roadside Safety Analysis Program to estimate the expected crash costs associated with various design contexts. A series of scenarios were evaluated, culminating in guidance as to the most cost-effective treatments for different combinations of roadway geometric and traffic characteristics. The results of this study provide an empirical model that can be used to predict the risk of culvert-involved crashes under various scenarios. The findings also suggest that the installation of safety grates on culvert openings provides a promising alternative for most of the cases where the culvert is located within the clear zone. In general, a guardrail is recommended when adverse conditions are present or when other treatments are not feasible at a specific location.


2020 ◽  
Vol 24 (5) ◽  
pp. 207-216
Author(s):  
Chamroeun Se ◽  
Thanapong Champahom ◽  
Sajjakaj Jomnonkwao ◽  
Vatanavongs Ratanavaraha

Single-Vehicle Run Off Road (ROR) crash has been the leading crash type in terms of frequency and severity in Thailand. In this study, multinomial logit analysis was applied to identify the risk factors potentially influencing driver injury severity of single-vehicle ROR crash using accident records between 2011 and 2017 which were extracted from Highway Accident Information Management System (HAIMS) database. The analysis results show that the age of driver older than 55 years old, male driver, driver under influence of alcohol, drowsiness, ROR to left/right on straight roadway increase the probability of fatal crash, while other factors are found to mitigate severity such as the age of driver between 26-35 years old, using seatbelt, ROR and hit fixed object on straight and curve segment of roadway, mounted traffic island, intersection-related and accident in April. This study recommends the need to improve road safety campaign, law enforcement, and roadside safety features that potentially reduce level of severity of driver involving in single-vehicle ROR crash.


Author(s):  
Javad Mehrmashhadi ◽  
Mojdeh A. Pajouh ◽  
John D. Reid

Abstract A closed guardrail system, known as “bullnose” guardrail system, was previously developed to prevent out-of-control vehicles from falling into the elephant trap. The bullnose guardrail system originally used Controlled Release Terminal (CRT) wood posts to aid in the energy absorption of the system. However, the use of CRT had several drawbacks such as grading and the need for regular inspections. Universal Breakaway Steel Post (UBSP) was then developed by the researchers at Midwest Roadside Safety Facility as a surrogate for CRT. In this study, the impact performance of UBSP on the weak-axis and strong-axis was studied through numerical modeling and component testing (bogie testing). A numerical model was developed using an advanced finite element package LS-DYNA to simulate the impact on UBSP. The numerical results were compared to experimental data. Further research on soil models was recommended. The numerical model will be used to investigate other applications for UBSP such as the Midwest Guardrail System (MGS) long span system, guardrail end terminal designs, or crash cushions.


2019 ◽  
Vol 131 ◽  
pp. 336-349 ◽  
Author(s):  
Carlos Roque ◽  
João Lourenço Cardoso ◽  
Thomas Connell ◽  
Govert Schermers ◽  
Roland Weber

Sign in / Sign up

Export Citation Format

Share Document