scholarly journals Acceptance criteria for validation metrics in roadside safety based on repeated full-scale crash tests

2010 ◽  
Vol 4 (1) ◽  
pp. 69 ◽  
Author(s):  
Mario Mongiardini ◽  
Malcolm H. Ray ◽  
Marco Anghileri
2012 ◽  
Vol 490-495 ◽  
pp. 2676-2680
Author(s):  
Hong Jun Cui ◽  
Xiao Jing Shen ◽  
Yu Liu ◽  
Xi Xin Sun

Pave overlay to the freeway repeatedly causes the guardrail’s height lower and lower, which seriously influences its performance in protection and safety. The paper aims to work out a height-adjustable W-beam guardrail which is economic, feasible and safe to solve the shortage in barrier’s height causes from paving overlays by computer simulation tests and full-scale crash tests, which will improve the roadside safety of the guardrail and save the reconstruction cost.


Author(s):  
Brian G. Pfeifer ◽  
Dean L. Sicking

A crashworthy terminal for strong-post W-beam guardrail systems was developed at the Midwest Roadside Safety Facility at the University of Nebraska—Lincoln. The terminal incorporates an impact head that is placed over the end of a tangent section of W-beam rail. The impact head is designed to be pushed down the rail and to dissipate impact energy by cutting the W-beam along the peaks and valley to produce four essentially flat strips of steel. These flat strips are then deflected out of the path of the vehicle, striking the end of the rail. Static and dynamic component tests as well as full-scale developmental crash tests conducted during the development of this system are described. Finally, the results of the three full-scale compliance crash tests are presented and discussed. The metal-cutting guardrail terminal was shown to meet NCHRP Report 230 safety performance standards.


Author(s):  
Malcolm H. Ray ◽  
Jeffery A. Hopp

Developing safe and effective guardrail terminals has been a high priority for roadside safety researchers for several decades. Numerous full-scale crash tests have been performed, and many new types of terminals have been developed. Results are presented of an in-service performance evaluation of two popular guardrail terminals—the breakaway cable terminal and the modified eccentric loader terminal. The data were collected in parts of Iowa and North Carolina during a 24-month period from 1997 to 1999. The collision characteristics, occupant injuries, and barrier damage were evaluated to determine collision performance.


Author(s):  
Robert W. Bielenberg ◽  
Dean L. Sicking ◽  
John R. Rohde ◽  
John D. Reid

The Midwest guardrail system (MGS), developed at the Midwest Roadside Safety Facility, was designed to improve the performance of traditional strong-post, W-beam guardrail systems. These improvements include decreasing the potential for rollover with high center-of-gravity vehicles, decreasing the potential for rail rupture at the splice locations, and decreasing the sensitivity of the system to the installation rail height. However, safe guardrail termination options for the MGS must be developed before the system can be implemented on the roadside. Two end terminal designs, the sequential kinking terminal (SKT) and the flared energy-absorbing terminal (FLEAT), were partially redesigned and crash tested in conjunction with the MGS according to NCHRP Report 350 criteria. The new versions of the terminals were named the SKT-MGS and the FLEAT-MGS to designate them for use with the MGS. To evaluate the performance of the terminals with the MGS, a series of four full-scale crash tests was conducted: two redirection tests, NCHRP Report 350 Test Designations 3–34 and 3–35, and two head-on impacts, Test Designations 3–30 and 3–31. The results from the four crash tests were found to meet all relevant safety requirements. The SKT-MGS and FLEAT-MGS end terminals are the first successfully tested end terminals for use with the MGS.


Author(s):  
Malcolm H. Ray

Developing safe and effective guardrail terminals has been a high priority of roadside safety researchers for several decades. Numerous full-scale crash tests have been performed, and many types of new terminals have been developed. In recent years, the FHWA has formalized the evaluation and certification process for roadside safety hardware, meaning that all guardrail terminals used on the National Highway System must satisfy the full-scale crash test and evaluation requirements of NCHRP Report 350. Although the newer guardrail terminals undoubtedly have better full-scale crash test performance, the relevancy to reducing serious and fatal injuries in real-world guardrail terminal collisions is not quite as clear. The in-service performance of guardrail terminals was evaluated to determine if upgrading the terminals to NCHRP Report 350 standards would reduce serious and fatal injury accidents.


Author(s):  
M. Mongiardini ◽  
J. D. Reid

Numerical simulations allow engineers in roadside safety to investigate the safety of retrofit designs minimizing or, in some cases, avoiding the high costs related to the execution of full-scale experimental tests. This paper describes the numerical investigation made to assess the performance of a roadside safety barrier when relocated behind the break point of a 3H:1V slope, found on a Mechanically Stabilized Earth (MSE) system. A safe barrier relocation in the slope would allow reducing the installation width of the MSE system by an equivalent amount, thus decreasing the overall construction costs. The dynamics of a pick-up truck impacting the relocated barrier and the system deformation were simulated in detail using the explicit non-linear dynamic finite element code LS-DYNA. The model was initially calibrated and subsequently validated against results from a previous full-scale crash test with the barrier placed at the slope break point. After a sensitivity analysis regarding the role of suspension failure and tire deflation on the vehicle stability, the system performance was assessed when it was relocated into the slope. Two different configurations were considered, differing for the height of the rail respect to the road surface and the corresponding post embedment into the soil. Conclusions and recommendations were drawn based on the results obtained from the numerical analysis.


Author(s):  
John D. Reid ◽  
Ronald K. Faller ◽  
Jim C. Holloway ◽  
John R. Rohde ◽  
Dean L. Sicking

For many years, containment for errant racing vehicles traveling on oval speedways has been provided through rigid, concrete containment walls placed around the exterior of the track. However, accident experience has shown that serious injuries and fatalities may occur through vehicular impacts into these nondeformable barriers. Because of these injuries, the Indy Racing League and the Indianapolis Motor Speedway, later joined by the National Association for Stock Car Auto Racing (NASCAR), sponsored the development of a new barrier system by the Midwest Roadside Safety Facility at the University of Nebraska–Lincoln to improve the safety of drivers participating in automobile racing events. Several barrier prototypes were investigated and evaluated using both static and dynamic component testing, computer simulation modeling with LS-DYNA (a nonlinear finite element analysis code), and 20 full-scale vehicle crash tests. The full-scale crash testing program included bogie vehicles, small cars, and a full-size sedan, as well as Indy Racing League open-wheeled cars and NASCAR Winston Cup cars. A combination steel tube skin and foam energy-absorbing barrier system, referred to as the SAFER (steel and foam energy reduction) barrier, was successfully developed. Subsequently, the SAFER barrier was installed at the Indianapolis Motor Speedway in advance of the running of the 2002 Indianapolis 500 race. From the results of the laboratory testing program as well as analysis of the accidents into the SAFER barrier occurring during practice, qualification, and the race, the SAFER barrier has been shown to provide improved safety for drivers impacting the outer walls.


2000 ◽  
Author(s):  
Krishnakanth Aekbote ◽  
Srinivasan Sundararajan ◽  
Joseph A. Prater ◽  
Joe E. Abramczyk

Abstract A sled based test method for simulating full-scale EEVC (European) side impact crash test is described in this paper. Both the dummy (Eurosid-1) and vehicle structural responses were simulated, and validated with the full-scale crash tests. The effect of various structural configurations such as foam filled structures, material changes, rocker and b-pillar reinforcements, advanced door design concepts, on vehicle performance can be evaluated using this methodology at the early stages of design. In this approach, an actual EEVC honeycomb barrier and a vehicle body-in-white with doors were used. The under-hood components (engine, transmission, radiator, etc.), tires, and the front/rear suspensions were not included in the vehicle assembly, but they were replaced by lumped masses (by adding weight) in the front and rear of the vehicle, to maintain the overall vehicle weight. The vehicle was mounted on the sled by means of a supporting frame at the front/rear suspension attachments, and was allowed to translate in the impact direction only. At the start of the simulation, an instrumented Eurosid-1 dummy was seated inside the vehicle, while maintaining the same h-point location, chest angle, and door-to-dummy lateral distance, as in a full-scale crash test. The EEVC honeycomb barrier was mounted on another sled, and care was taken to ensure that weight, and the relative impact location to the vehicle, was maintained the same as in full-scale crash test. The Barrier impacted the stationary vehicle at an initial velocity of approx. 30 mph. The MDB and the vehicle were allowed to slide for about 20 inches from contact, before they were brought to rest. Accelerometers were mounted on the door inner sheet metal and b-pillar, rocker, seat cross-members, seats, and non-struck side rocker. The Barrier was instrumented with six load cells to monitor the impact force at different sections, and an accelerometer for deceleration measurement. The dummy, vehicle, and the Barrier responses showed good correlation when compared to full-scale crash tests. The test methodology was also used in assessing the performance/crashworthiness of various sub-system designs of the side structure (A-pillar, B-pillar, door, rocker, seat cross-members, etc.) of a passenger car. This paper concerns itself with the development and validation of the test methodology only, as the study of various side structure designs and evaluations are beyond the scope of this paper.


2018 ◽  
Vol 219 ◽  
pp. 02012
Author(s):  
Dawid Bruski ◽  
Stanisław Burzyński ◽  
Jacek Chróścielewski ◽  
Łukasz Pachocki ◽  
Krzysztof Wilde ◽  
...  

Road safety barriers are used to increase safety in potentially dangerous places on the roads. They are designed and installed on the roads to prevent any vehicle from getting outside the travelled way or from entering the opposite lane of the road. Barriers, which are used on European roads, have to undergo full scale crash tests according to the EN 1317 standards. Nowadays as a supplement to real crash tests, numerical simulations are commonly used. The work concerns the influence of position of the post or its absence on the crashworthiness of the cable barrier based on numerical study results.


Sign in / Sign up

Export Citation Format

Share Document