Fast Nondestructive Field Test Method to Determine Stiffness of Subsurface Layer in Thin Surface Hot-Mix Asphalt Pavement

Author(s):  
Rajib B. Mallick ◽  
Animesh Das ◽  
S. Nazarian

The determination of the moduli of subsurface stabilized layers in pavements with unknown and variable layers and thin asphalt layers is a challenging problem. Reliable estimation of moduli cannot be obtained from backcalculation of falling weight deflectometer data. In addition, for many stabilized layers, full-depth intact cores cannot be obtained from the field, and hence, laboratory determination of the moduli is not possible. Analysis of the seismic property of a pavement is a well-known method for estimation of the surface modulus of the pavement. This paper proposes a simple methodology on how seismic data acquired on the pavement surface can be effectively used to estimate the modulus of the surface layer as well as those of the subsequent subsurface layers of a flexible pavement. A research study was conducted on three hot-mix asphalt pavements with a foamed asphalt (FA) stabilized base in Maine. These three pavements were tested with both portable seismic and falling weight deflectometer equipment. Cores were taken from the same locations and tested in the laboratory for their resilient moduli. The modulus values obtained from different tests were compared, the effect of temperature on the modulus of the FA was evaluated, and the deflections computed from layered elastic analysis by use of the predicted modulus of the FA layer were compared with the observed deflections. It is concluded that the portable seismic equipment can be used to determine accurate moduli of subsurface stabilized layers. The practical advantages of using such equipment warrant further study for refinement of the method.

2018 ◽  
Vol 45 (5) ◽  
pp. 377-385 ◽  
Author(s):  
Omar Elbagalati ◽  
Momen Mousa ◽  
Mostafa A. Elseifi ◽  
Kevin Gaspard ◽  
Zhongjie Zhang

Backcalculation analysis of pavement layer moduli is typically conducted based on falling weight deflectometer (FWD) measurements; however, the stationary nature of FWD requires lane closure and traffic control. To overcome these limitations, a number of continuous deflection devices were introduced in recent years. The objective of this study was to develop a methodology to incorporate traffic speed deflectometer (TSD) measurements in the backcalculation analysis. To achieve this objective, TSD and FWD measurements were used to train and to validate an artificial neural network (ANN) model that would convert TSD deflection measurements to FWD deflection measurements. The ANN model showed acceptable accuracy with a coefficient of determination of 0.81 and a good agreement between the backcalculated moduli from FWD and TSD measurements. Evaluation of the model showed that the backcalculated layer moduli from TSD could be used in pavement analysis and in structural health monitoring with a reasonable level of accuracy.


Author(s):  
Claude Villiers ◽  
Reynaldo Roque ◽  
Bruce Dietrich

The transverse profilograph has been recognized as one of the most accurate devices for the measurement of rut depth. However, interpretation of surface transverse profile measurements poses a major challenge in determining the contributions of the different layers to rutting. A literature review has shown that the actual rutting mechanism can be estimated from a surface transverse profile for determination of the relative contribution of the layers to rutting. Unfortunately, much of the research yielded no verification or data. In addition, some techniques presented cannot be used if the rut depth is not well pronounced. Other techniques may be costly and time-consuming. The present research developed an approach that integrates ( a) falling weight deflectometer and core data along with 3.6-m transverse profile measurements to assess the contributions of different pavement layers to rutting and ( b) identifies the presence (or absence) of instability within the asphalt surface layer. This approach can be used regardless of the magnitude of the rut depth. On the basis of the analysis conducted, absolute rut depth should not be used to interpret the performance of the asphalt mixture. In addition, continued instability may not result in an increase in rut depth because the rutted basin broadens as traffic wander compacts or moves the dilated portion of the mixture. The approach developed appears to provide a reasonable way to distinguish between different sources of rutting. The conclusions drawn from analysis of the approach agreed well with observations from the trench cuts taken from four sections.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1689 ◽  
Author(s):  
Boštjan Kovačič ◽  
Damjan Želodec ◽  
Damjan Doler

The last 20-year announcement predicts a 3.5% increase in the number of yearly passengers which will result in the doubling of the number of passengers in air transport by 2037. Such anticipation indicates the need for efficient monitoring of airport infrastructure as the support of opportune and efficient maintenance works. The novelties of this article are a process model of maintenance and monitoring, suitable for smaller and less burdened airports, and the methodology of monitoring of runways by implementation of the geodetic and geomechanics falling weight deflectometer (FWD) method. In addition, the results confirm the assumption that a specific environment such as an airport allows for sufficiently reliable determination of deformation areas or areas of vertical deviations of runways in a relative short time period available for measurements by using geodetic methods only or by combining other methods; our research model includes the FWD method. With the research, we have also shown there is an interaction between deformations or areas of vertical deviations on the surface and anomalies in the runway lower constructure which will, hereinafter, allow the development of the prediction, creating a vertical deviations or deformation model.


Sign in / Sign up

Export Citation Format

Share Document