Pedestrians/Bicyclists and Autonomous Vehicles: How Will They Communicate?

Author(s):  
Sergiu C. Stanciu ◽  
David W. Eby ◽  
Lisa J. Molnar ◽  
Renée M. St. Louis ◽  
Nicole Zanier ◽  
...  

Interpersonal roadway communication is a vital component of the transportation system. Road users communicate to coordinate movement and increase roadway safety. Future autonomous vehicle research needs to account for the role of interpersonal roadway communication. This literature review synthesizes research on interpersonal interaction between drivers, bicyclists, and pedestrians while also directing attention to implications for autonomous and connected vehicle research. Articles were collected from TRID, PsycINFO, Google Scholar, and ScienceDirect using search terms relevant to driving, communication, and vulnerable road users. The synthesis documents that interpersonal communication not only takes place but is also an important and understudied aspect of safe roadway travel. The review also found that road users employ a variety of communication methods that include gestures, facial expressions, and built-in vehicular devices. Comprehension of messages is influenced by several factors including culture, context, and experience. These results shed light on potential issues and challenges of interpersonal communication and the introduction of autonomous vehicles to the roadway.

2019 ◽  
Vol 9 (11) ◽  
pp. 2335 ◽  
Author(s):  
Sarfraz Ahmed ◽  
M. Nazmul Huda ◽  
Sujan Rajbhandari ◽  
Chitta Saha ◽  
Mark Elshaw ◽  
...  

As autonomous vehicles become more common on the roads, their advancement draws on safety concerns for vulnerable road users, such as pedestrians and cyclists. This paper presents a review of recent developments in pedestrian and cyclist detection and intent estimation to increase the safety of autonomous vehicles, for both the driver and other road users. Understanding the intentions of the pedestrian/cyclist enables the self-driving vehicle to take actions to avoid incidents. To make this possible, development of methods/techniques, such as deep learning (DL), for the autonomous vehicle will be explored. For example, the development of pedestrian detection has been significantly advanced using DL approaches, such as; Fast Region-Convolutional Neural Network (R-CNN) , Faster R-CNN and Single Shot Detector (SSD). Although DL has been around for several decades, the hardware to realise the techniques have only recently become viable. Using these DL methods for pedestrian and cyclist detection and applying it for the tracking, motion modelling and pose estimation can allow for a successful and accurate method of intent estimation for the vulnerable road users. Although there has been a growth in research surrounding the study of pedestrian detection using vision-based approaches, further attention should include focus on cyclist detection. To further improve safety for these vulnerable road users (VRUs), approaches such as sensor fusion and intent estimation should be investigated.


2021 ◽  
Vol 11 (7) ◽  
pp. 101
Author(s):  
Andrew Paul Morris ◽  
Narelle Haworth ◽  
Ashleigh Filtness ◽  
Daryl-Palma Asongu Nguatem ◽  
Laurie Brown ◽  
...  

(1) Background: Passenger vehicles equipped with advanced driver-assistance system (ADAS) functionalities are becoming more prevalent within vehicle fleets. However, the full effects of offering such systems, which may allow for drivers to become less than 100% engaged with the task of driving, may have detrimental impacts on other road-users, particularly vulnerable road-users, for a variety of reasons. (2) Crash data were analysed in two countries (Great Britain and Australia) to examine some challenging traffic scenarios that are prevalent in both countries and represent scenarios in which future connected and autonomous vehicles may be challenged in terms of safe manoeuvring. (3) Road intersections are currently very common locations for vulnerable road-user accidents; traffic flows and road-user behaviours at intersections can be unpredictable, with many vehicles behaving inconsistently (e.g., red-light running and failure to stop or give way), and many vulnerable road-users taking unforeseen risks. (4) Conclusions: The challenges of unpredictable vulnerable road-user behaviour at intersections (including road-users violating traffic or safe-crossing signals, or taking other risks) combined with the lack of knowledge of CAV responses to intersection rules, could be problematic. This could be further compounded by changes to nonverbal communication that currently exist between road-users, which could become more challenging once CAVs become more widespread.


2016 ◽  
Vol 38 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Adam Millard-Ball

Autonomous vehicles, popularly known as self-driving cars, have the potential to transform travel behavior. However, existing analyses have ignored strategic interactions with other road users. In this article, I use game theory to analyze the interactions between pedestrians and autonomous vehicles, with a focus on yielding at crosswalks. Because autonomous vehicles will be risk-averse, the model suggests that pedestrians will be able to behave with impunity, and autonomous vehicles may facilitate a shift toward pedestrian-oriented urban neighborhoods. At the same time, autonomous vehicle adoption may be hampered by their strategic disadvantage that slows them down in urban traffic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261673
Author(s):  
Maike M. Mayer ◽  
Raoul Bell ◽  
Axel Buchner

Upon the introduction of autonomous vehicles into daily traffic, it becomes increasingly likely that autonomous vehicles become involved in accident scenarios in which decisions have to be made about how to distribute harm among involved parties. In four experiments, participants made moral decisions from the perspective of a passenger, a pedestrian, or an observer. The results show that the preferred action of an autonomous vehicle strongly depends on perspective. Participants’ judgments reflect self-protective tendencies even when utilitarian motives clearly favor one of the available options. However, with an increasing number of lives at stake, utilitarian preferences increased. In a fifth experiment, we tested whether these results were tainted by social desirability but this was not the case. Overall, the results confirm that strong differences exist among passengers, pedestrians, and observers about the preferred course of action in critical incidents. It is therefore important that the actions of autonomous vehicles are not only oriented towards the needs of their passengers, but also take the interests of other road users into account. Even though utilitarian motives cannot fully reconcile the conflicting interests of passengers and pedestrians, there seem to be some moral preferences that a majority of the participants agree upon regardless of their perspective, including the utilitarian preference to save several other lives over one’s own.


Author(s):  
Mohsen Malayjerdi ◽  
Vladimir Kuts ◽  
Raivo Sell ◽  
Tauno Otto ◽  
Barış Cem Baykara

Abstract One of the primary verification criteria of the autonomous vehicle is safe interaction with other road users. Based on studies, real-road testing is not practical for safety validation due to its time and cost consuming. Therefore, simulating miles driven is the only feasible way to overcome this limitation. The primary goal of the related research project is to develop advanced techniques in the human-robot interaction (HRI) safety validation area by usage of immersive simulation technologies. Developing methods for the creation of the simulation environment will enable us to do experiments in a digital environment rather than real. The main aim of the paper is to develop an effective method of creating a virtual environment for performing simulations on industrial robots, mobile robots, and autonomous vehicles (AGV-s) from the safety perspective for humans. A mid-size drone was used for aerial imagery as the first step in creating a virtual environment. Then all the photos were processed in several steps to build the final 3D map. Next, this mapping method was used to create a high detail simulation environment for testing an autonomous shuttle. Developing efficient methods for mapping real environments and simulating their variables is crucial for the testing and development of control algorithms of autonomous vehicles.


2018 ◽  
Author(s):  
Igor Radun ◽  
Jenni Radun ◽  
Jyrki Kaistinen ◽  
Jake Olivier ◽  
Göran Kecklund ◽  
...  

Unlike hypothetical trolley problem studies and an ongoing ethical dilemma with autonomous vehicles, road users can face similar ethical dilemmas in real life. Swerving a heavy vehicle towards the road-side in order to avoid a head-on crash with a much lighter passenger car is often the only option available which could save lives. However, running off-road increases the probability of a roll-over and endangers the life of the heavy vehicle driver. We have created an experimental survey study in which heavy vehicle drivers randomly received one of two possible scenarios. We found that responders were more likely to report they would ditch their vehicle in order to save the hypothetical driver who fell asleep than to save the driver who deliberately diverted their car towards the participant’s heavy vehicle. Additionally, the higher the empathy score, the higher the probability of ditching a vehicle. Implications for autonomous vehicle programming are discussed.


Sign in / Sign up

Export Citation Format

Share Document