Developing a Crash Warning System for the Bike Lane Area at Intersections with Connected Vehicle Technology

Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Ou Zheng ◽  
Qing Cai ◽  
Lishengsa Yue

A common type of bike lane at intersections is between the through lane and the right lane. With such design, right-turning drivers need to cross the bike lane to merge into the right lane, which could cause conflicts with bicycles on the keyhole bike lane. This study aims to develop a warning system for drivers to avoid vehicle–bicycle crashes in the bike lane area under a connected vehicle environment. To propose a reasonable warning system, 118 right-turning vehicle trajectories were collected by an unmanned aerial vehicle. Drivers’ right-turning behaviors are investigated based on the trajectory data. Then, a vehicle–bicycle crash warning algorithm is proposed to calculate the post-encroachment time (PET) under different situations. By comparing the threshold value and the PET value, potential vehicle–bicycle crash locations in the bike lane area could be identified. The proposed algorithm is designed to be displayed on front windshields with an augmented reality display. The results suggested that the proposed algorithm could provide high prediction accuracy. Moreover, vehicle speed, vehicle location, bicycle speed, and bicycle location were found to have significant impact on the locations of dangerous areas. It is expected that the proposed warning system could be used to identify the dangerous areas and deliver warning information for right-turning drivers when they are approaching an intersection. The warning system could help drivers be more prepared for the upcoming right-turning maneuver, and thus improve traffic safety for both drivers and cyclists at intersections.

2013 ◽  
Vol 333-335 ◽  
pp. 805-810 ◽  
Author(s):  
Rong Bao Chen ◽  
Ning Li ◽  
Hua Feng Xiao ◽  
Wei Hou

With the development of economy, there are an increasing number of cars as well as traffic accidents, thus intensifying the need to take measures to reduce traffic accidents and protect the safety of life and property. Vehicle distance is one of the most important indexes of traffic safety. The measurement of safety vehicle distance has become an increasingly hot research area of intelligent transportation. Through analyzing the basic principle of stereo vision and calibrating the parameters of the CCD sensors both inside and outside, this paper comes up with a method to measure the former vehicle distance based on stereo vision and DSP. Once the vehicle speed and distance form a non-security association, it will give a warning, and upload data or force speed-limiting. According to the different coordinates of the obtained images of the target vehicle from the left and the right sensor, this method can identify feature points, calculate distance to the target vehicle, and analyze the security of vehicle distance. The experimental results show that this method has wide measurement range, high measurement accuracy, and fast operation rate, thus it can meet the actual needs of the measurement of safe vehicle distance in intelligent transportation.


2016 ◽  
Vol 16 (1) ◽  
pp. 101-115
Author(s):  
Victor Kustra

Automobile accidents and roadway infrastructure problems are increasing in the United States.  Specifically, 5.7 million automobile accidents were reported in 2013.  The number of automobile accidents caused by lane drifting has increased over the past fifteen years, given the increased number of drivers on the road.   The National Highway Traffic Safety Administration (NHTSA) and the United States Department of Transportation (USDOT) have developed a cumulative solution to these problems. Connected Vehicle  technology is part of the USDOT’s “Intelligent Transportation Systems” (ITS) initiative.  The ITS initiative targets automobile crash avoidance and better traffic flow through the use of automated technologies.[1] Id. at v. 


2020 ◽  
Vol 50 (4) ◽  
pp. 299-308
Author(s):  
Jarosław Zalewski

AbstractIn this paper, the selected phenomena related to a motor vehicle’s motion have been considered based on a computer simulation in MSC Adams/Car. The vehicle’s model performed a turning maneuver with the steering wheel release under different road conditions.All simulations have been performed based on the sports two-seater vehicle’s model, at the initial speed of 70 km/h on the flat and randomly uneven road. This enabled us to observe the selected phenomena along the road long enough to relate them to different aspects of road traffic safety in unusual situations. For uneven road, the same profiles were assumed for the left and the right wheel of the vehicle, with two coefficient values determining the maximum height of these irregularities.


2011 ◽  
Vol 130-134 ◽  
pp. 3511-3514
Author(s):  
Wen Jun Li ◽  
Kui Feng ◽  
Hong Kun Zhang

The majority of traffic accidents on the highway is rear-end collision. According to statistics about ninety percent rear-end collision can be avoided if there is 1 second pretreatment time for drivers. So it is necessary to develop automotive rear-end collision warning system to prevent the occurrence of accidents. The anti-rear-end collision warning system based on Zigbee technology is designded in this paper. Vehicle speed, acceleration and other traffic information among the nodes can be exchanged on real-time by using self-organizing wireless sensor networks consisted by Zigbee network nodes. A vehicle safe distance model is established after considered the effects of other traffic safety factors, and then, the actual distance measured by radar is compared with the safe distance so as to provide early warning, alarm and other driving information to drivers. The experiment results show that the system can effectively provide early warning, avoid rear-end collision, and improve active safety of vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ruoxi Jiang ◽  
Shunying Zhu ◽  
Pan Wang ◽  
QiuCheng Chen ◽  
He Zou ◽  
...  

Currently, many studies on the severity of traffic conflicts only considered the possibility of potential collisions but ignored the consequences severity of potential collisions. Aiming toward this defect, this study establishes a potential collision (serious conflict) consequences severity model on the basis of vehicle collision theory. Regional vehicles trajectory data and historical traffic accident data were obtained. The field data were brought into the conflict consequences severity model to calculate the conflict severity rate of each section under different TTC thresholds. For comparison, the traditional conflict rate of each section under different TTC thresholds that considered only the number of conflicts was also calculated. Results showed that the relationship between conflict severity rate and influencing factors was somehow different. The conflict severity rate seemed to have a higher correlation with accident rate and accident severity rate than conflict rate did. The TTC threshold value also affected the correlation between conflicts and accidents, with high and low TTC threshold indicating a lower correlation. The results showed that conflict severity rate that considered each single conflict consequence severity was a little better than the traditional conflict rate that considered only the numbers of conflicts in reflecting real risks as a new conflict evaluation indicator. The severity of traffic conflicts should consider two dimensions: the possibility and consequence of potential collisions. Based on this, we propose a new traffic safety evaluation method that takes into account the severity of the consequences of the conflict. More data and prediction models are needed to conduct more realistic and complex research in the future to ensure reliability of this new method.


2017 ◽  
Vol 2645 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Pangwei Wang ◽  
WenXiang Wu ◽  
Xiaohui Deng ◽  
Lin Xiao ◽  
Li Wang ◽  
...  

Connected vehicle technology exchanges real-time vehicle and traffic information through vehicle-to-vehicle and vehicle-to-infrastructure communication. The technology has the potential to improve traffic safety applications such as collision avoidance. In this paper, a novel cooperative collision avoidance (CCA) model that could improve the effectiveness of the collision avoidance system of connected vehicles was developed. Unlike traditional collision avoidance models, which relied mainly on emergency braking, the proposed CCA approach avoided collision through a combination of following vehicle deceleration and leading vehicle acceleration. Through spacing policy theory and nonlinear optimization, the model calculated the desired deceleration rate for the following vehicle and the acceleration rate for the leading vehicle, respectively, at each time interval. The CCA approach was then tested on a scaled platform with hardware-in-the-loop simulation embedded with MATLAB/Simulink and a car simulator package, CarSim. Results show that the proposed model can effectively avoid rear-end collisions in a three-vehicle platoon.


Author(s):  
G Wilson ◽  
G Morrison ◽  
W Midgley ◽  
D Cebon

This paper investigates the traffic-related effects of a proposal to increase the speed limit from 40 mile/h to 50 mile/h, for heavy goods vehicles greater than 7.5 tonnes, on single carriageway roads. A ‘microscopic’ single carriageway traffic simulation is developed by combining the ‘enhanced intelligent driver model’ with a single carriageway gap-acceptance passing model. Fuel consumption estimates are made using engine characteristic maps and a ‘fuel optimal’ gear selection scheme, where vehicle trajectories from the traffic simulations are taken as input drive-cycles. Traffic congestion and fleet fuel consumption are specifically addressed, though implications regarding passing behaviour and traffic safety are also noted. Results indicate that the proposed 50 mile/h heavy goods vehicles speed limit would reduce traffic congestion by over 37% and increase fleet fuel consumption by approximately 0.5 L/100 km.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Chang ◽  
Haijian Li ◽  
Jian Rong ◽  
Zhufei Huang ◽  
Xiaoxuan Chen ◽  
...  

Connected vehicle technology has potentials to increase traffic safety, reduce traffic pollution, and ease traffic congestion. In the connected vehicle environment, the information interaction among people, cars, roads, and the environment is significantly enhanced, and driver behavior will change accordingly due to increased external stimulation. This paper designed a Vehicle-to-Vehicle (V2V) on-board unit (OBU) based on driving demand. In addition, a simulation platform for the interconnection and communication between the OBU and simulator was built. Thirty-one test drivers were investigated to drive an instrumented vehicle in four scenarios, with and without the OBU under two different traffic states. Collected trajectory data of the subject vehicle and the vehicle in front, as well as sociodemographic characteristics of the test drivers were used to evaluate the potential impact of such OBUs on driving behavior and traffic safety. Car-following behavior is an essential component of microsimulation models. This paper also investigated the impacts of the V2V OBU on car-following behaviors. Considering the car-following related indicators, the k-Means algorithm was used to categorize different car-following modes. The results show that the OBU has a positive impact on drivers in terms of speed, front distance, and the time to stable regime. Furthermore, drivers’ opinions show that the system is acceptable and useful in general.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xuewei Li ◽  
Yuchen Jia ◽  
Yufei Chen ◽  
Guanyang Xing ◽  
Xiaohua Zhao ◽  
...  

Changes in driving behavior caused by reduced visibility in fog can lead to crashes. To improve driving safety in fog weather, a fog warning system based on connected vehicle (CV) technology is proposed. From the perspective of human factors, this study evaluates the driving safety based on drivers’ speed change under different fog levels (i.e., no fog, light fog, and heavy fog) and different technical levels (i.e., normal, with a dynamic message sign (DMS), and with a human-machine interface (HMI)). The driving behavior data were collected by a driving simulation experiment. The experimental road was divided into three zones: clear zone, transition zone, and fog zone. To quantify the change of vehicle speed comprehensively, the speed and acceleration were selected. Meanwhile, the vehicle speed safety entropy and acceleration safety entropy were proposed based on sample entropy theory. Furthermore, the changes of each index in different zones were analyzed. The results show that the use of fog warning system can improve speed stability and driving safety in fog zones and can make the driver decelerate in advance with a smaller deceleration before entering the fog zones. The higher the technical level is, the earlier the driver decelerates. Under the condition of light fog, the fog warning system with HMI has a better effect in terms of improving speed stability, while under the condition of heavy fog, there is little difference between the two technical levels. In general, this study proposed a novel safety evaluation index and a general evaluation method of the fog warning system.


Author(s):  
Nataliia Kharytonova ◽  
Olha Mykolaienko ◽  
Tetyana Lozova

Greening of roads contributes to the protection of roads and their elements from influence of adverse weather and climatic factors; it includes the measures for improvement and landscaping of roads, ensures the protection of roadside areas from transport pollution, provides visual orientation of drivers. The solution of these issues will ensure creation and maintenance of safe and comfortable conditions for travelers. Green plantings in the right-of-way road area include woody, bushy, flower and grass vegetation of natural and artificial origin. For proper operation of public roads and satisfaction of other needs of the industry, there may be the need in removing the greenery. The reason for the removal of greenery in the right-of-way road area may be due to the following factors: construction of the architectural object, widening of the motor road, repair works in the security zone of overhead power lines, water supply, drainage, heating, telecommunications facilities, cutting of hazardous, dry and fautal trees, as well as self-grown and brushwood trees with a root neck diameter not exceeding 5 cm, elimination of the consequences of natural disasters and emergencies. The removal of plantations in the right-of-way area is executed in order to ensure traffic safety conditions and to improve the quality of plantations composition and their protective properties. Nowadays, in Ukraine there is no clear procedure for issuing permits for removing of such plantations. In order to resolve this issue, there is a need in determining the list of regulations in the area of forest resources of Ukraine and, if needed, the list of regulatory acts that have to be improved; to prepare a draft of the regulatory legal act that would establish the procedure of plantations cutting, the methodology of their condition determination, recovery costs determination, the features of cutting. Keywords: plantations, cutting, right-of-way, woodcutting permit, order.


Sign in / Sign up

Export Citation Format

Share Document