Construction of an Electrically Heated Asphalt Road Based on Ribbon Technology

Author(s):  
Eyal Levenberg ◽  
Quentin Félix Adam

Although asphalt pavements are the most common pavement type worldwide, there is no accepted heating solution for this infrastructure class for melting snow and preventing ice formation at the ride-surface. This study was concerned with utilizing electric ribbon technology as a suitable heating solution. A method was proposed to introduce ribbon heaters into the typical paving process in a practical manner, causing minimal disruption to the normal paving operations, that is potentially expandable to large areas. The advocated idea was to deploy ribbons after an asphalt concrete (AC) lift has been paved and compacted, and before paving and compacting the next AC lift(s). In this context, a special grooving machine was envisioned to make shallow channels in the AC for cradling each ribbon. Thus, the system survivability is guaranteed, with all ribbons protected against the maneuvering of trucks, paving equipment, and heavy rollers. Subsequently, the method was demonstrated through the full-scale construction of a heated road that included installing ribbons in-between AC lifts. For this purpose, the protective ribbon channels were grooved with a customized milling machine. The entire construction process was described in detail, and some initial findings from activating the system were also included. An overall system survivability of 97% was achieved, and the installation concept appears practical and up-scalable.

2011 ◽  
Vol 374-377 ◽  
pp. 1904-1907
Author(s):  
Yu Hua Li ◽  
Hai Xiang Li ◽  
Yu Xing Liu ◽  
Jing Yun Chen

Chip seal is most frequently used as preventive maintenance (PM) treatments on asphalt pavement. However, it’s difficult to make the performance test of chip seal in laboratory. In this paper, the specimen molding method of chip seal is established in laboratory. Firstly, considering the structure and technique condition of the original pavement, a cushion layer of asphalt concrete (AC) is used as under layer of the specimen. Secondly, the construction process of chip seal is simulated in laboratory, which includes spraying emulsified asphalt and/or glass fiber, spreading aggregate, initial rolling and conservation, post-stage rolling and conservation in interval for some time. Lastly, visual inspection and sand patch test are used to evaluate the quality of the specimen. Research results show that the method of specimen molding and test in laboratory could relatively accurately simulate, evaluate and forecast the performance of the chip seal.


2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


Author(s):  
George W. Breslauer

In 1958–1959, Khrushchev launched his program for the “full-scale construction of communism.” Not coincidentally, in the same time period, China’s Mao launched his disastrous “Great Leap Forward,” Yugoslavia generalized its program of “workers’ self-management” as a blueprint for the communist world moving forward, while North Korea presented the late-Stalinist policy of monolithic, terroristic control as the only true path to communism.


Author(s):  
W. Jeremy Robinson ◽  
Jeb S. Tingle ◽  
Carlos R. Gonzalez

A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of four test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads. Rutting behavior, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. It was found that the performance of the airfield pavement sections were most sensitive to aggregate base course properties, where a 50% reduction in base course strength resulted in a 99% reduction in allowable passes. The data suggested that when sufficient asphalt thickness is not provided, the failure mechanism shifted from subgrade failure to base course failure, particularly at higher subgrade CBR values. In addition, the number of aircraft passes sustained was less than that predicted by current Department of Defense (DOD) methods that include assumptions of a high-quality aggregate base and a minimum asphalt concrete thickness. The results of this study were used to extend existing DOD pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop a new base failure design curve using existing stress-based design criteria.


2010 ◽  
Vol 97 (8) ◽  
pp. 86-93
Author(s):  
Laura Anania ◽  
Antonio Badala' ◽  
Sebastiano Costa

Author(s):  
Anthony M. Viselli ◽  
Andrew J. Goupee ◽  
Habib J. Dagher

A new floating wind turbine platform design called VolturnUS developed by the University of Maine uses innovations in materials, construction, and deployment technologies such as a concrete semisubmersible hull and a composite tower to reduce the costs of offshore wind. These novel characteristics require research and development prior to full-scale construction. This paper presents a unique offshore model testing effort aimed at derisking full-scale commercial projects by providing scaled global motion data, allowing for testing of materials representative of the full-scale system, and demonstrating full-scale construction and deployment methods. A 1:8-scale model of a 6 MW semisubmersible floating wind turbine was deployed offshore Castine, ME, in June 2013. The model includes a fully operational commercial 20 kW wind turbine and was the first grid-connected offshore wind turbine in the U.S. The testing effort includes careful selection of the offshore test site, the commercial wind turbine that produces the correct aerodynamic thrust given the wind conditions at the test site, scaling methods, model design, and construction. A suitable test site was identified that produced scaled design load cases (DLCs) prescribed by the American Bureau of Shipping (ABS) Guide for Building and Classing Floating Offshore Wind Turbines. A turbine with a small rotor diameter was selected because it produces the correct thrust load given the wind conditions at the test site. Some representative data from the test are provided in this paper. Model test data are compared directly to full-scale design predictions made using coupled aeroelastic/hydrodynamic software. Scaled VolturnUS performance data during DLCs show excellent agreement with full-scale predictive models. Model test data are also compared directly without scaling against a numerical representation of the 1:8-scale physical model for the purposes of numerical code validation. The numerical model results compare favorably with data collected from the physical model.


Sign in / Sign up

Export Citation Format

Share Document