scholarly journals Drivers Still Have Limited Knowledge About Adaptive Cruise Control Even When They Own the System

Author(s):  
Chelsea A. DeGuzman ◽  
Birsen Donmez

Much of the existing research on drivers’ understanding of adaptive cruise control (ACC), a type of advanced driver assistance system, was conducted several years ago. Through an online survey, this study aimed to assess ACC knowledge among ACC owners and non-owners now that this system is more widely available. Along with knowledge of ACC features and limitations, demographic information, experience with technology, and experience with ACC (for owners) were also collected to investigate which factors predicted knowledge of ACC features and limitations. Results showed that owners today may have a better understanding of some of the main limitations of ACC compared with research conducted over 10 years ago. However, a large percentage of owners still had misperceptions about their ACC system. While owners had a slightly higher percentage of correct answers overall, they did not differ from non-owners in their knowledge of limitations. As this technology is becoming more common, even non-owners may be becoming aware of common limitations; owning and using ACC does not seem to result in a better system understanding. Higher income was associated with a higher percentage of correct responses on the ACC knowledge questionnaire for both owners and non-owners, and for non-owners, higher education level was also significantly associated with a higher percentage of correct responses. Future research should focus on developing training materials that are accessible to all drivers, so that drivers in lower education and income groups are also supported to understand how advanced driver assistance systems work and benefit from these technologies.

Author(s):  
Michael A. Nees ◽  
Nithya Sharma ◽  
Karli Herwig

People construct mental models—internal cognitive representations—when they interact with dynamic systems. The introduction of automation in vehicles has raised concerns about potential negative consequences of inaccurate mental models, yet characteristics of mental models remain difficult to identify. A descriptive study used semi-structured interviews to explore mental models of advanced driver assistance systems (adaptive cruise control, lane keeping assist, and Level 2 systems). Results exposed shortcomings in drivers’ understandings of the hardware, software, and limitations of these systems and also suggested that mental models will affect behavior while using automation. Further, we found that mental models can be influenced by interface feedback (or lack thereof) and limitations experienced. Some drivers attributed purposeful design to aspects of the systems that likely were chosen idiosyncratically or arbitrarily. Our findings offered potentially useful avenues for future research on mental models of automation and corroborated concerns that inaccurate mental models may be common.


2020 ◽  
Author(s):  
Michael Nees ◽  
Nithya Sharma ◽  
Karli Herwig

People construct mental models—internal cognitive representations—when they interact with dynamic systems. The introduction of automation in vehicles has raised concerns about potential negative consequences of inaccurate mental models, yet characteristics of mental models remain difficult to identify. A descriptive study used semi-structured interviews to explore mental models of advanced driver assistance systems (adaptive cruise control, lane keeping assist, and Level 2 systems). Results exposed shortcomings in drivers’ understandings of the hardware, software, and limitations of these systems and also suggested that mental models will affect behavior while using automation. Further, we found that mental models can be influenced by interface feedback (or lack thereof) and limitations experienced. Some drivers attributed purposeful design to aspects of the systems that likely were chosen idiosyncratically or arbitrarily. Our findings offered potentially useful avenues for future research on mental models of automation and corroborated concerns that inaccurate mental models may be common.


Author(s):  
Steven Landry ◽  
Bobbie Seppelt ◽  
Luca Russo ◽  
Martin Krampell

As advanced driver assistance systems (ADAS) increase in functionality, so do the functional requirements of their visual displays to communicate status and settings. Drivers who misinterpret in-vehicle displays may be more likely to misuse or avoid using ADAS, negating the potential safety benefits. A novel evaluation method is proposed and applied to the (at the time of surveying) latest Volvo instrument cluster. An online survey was completed by 838 Volvo car owners with varying levels of familiarity with adaptive cruise control and pilot assist. Results suggest that the concepts of a system being “available but not on” or “on but not actively providing support” can be difficult for novice users to recognize, resulting in a mode or state confusion. However, more experienced users were less likely to make these types of errors. The assessment method of providing users with partially masked images shows promise as a useful tool for evaluating comprehension of ADAS in-vehicle visual displays.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000077-000081
Author(s):  
Sebastian Brunner ◽  
Manfred Stadler ◽  
Xin Wang ◽  
Frank Bauer ◽  
Klaus Aichholzer

In this paper we will present an application of advanced Low Temperature Cofired Ceramic (LTCC) technology beyond 60 GHz. Therefore a RF frontend for 76–81 GHz radar frequency was built. LTCC is a well established technology for applications for consumer handheld units <5 GHz but will provide solutions for applications for high frequencies in the range of 60 GHz and beyond. Radar sensors operating in the 76-81 GHz range are considered key for Advanced Driver Assistance Systems (ADAS) like Adaptive Cruise Control (ACC), Collision Mitigation and Avoidance Systems (CMS) or Lane Change Assist (LCA). These applications are the next wave in automotive safety systems and have thus generated increased interest in lower-cost solutions especially for the mm-wave frontend section.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Dan Liang ◽  
Nathan Lau ◽  
Stephanie A Baker ◽  
Jonathan F Antin

Abstract Background and Objectives The increasing number of senior drivers may introduce new road risks due to age-related declines in physical and cognitive abilities. Advanced driver assistance systems (ADAS) have been proposed as solutions to minimize age-related declines, thereby increasing both senior safety and mobility. This study examined factors that influence seniors’ attitudes toward adopting ADAS after significant exposure to the technology in naturalistic settings. Research Design and Methods This study recruited 18 senior drivers aged 70–79 to drive vehicles equipped with ADAS for 6 weeks in their own environments. Afterward, each participant was enrolled in 1 of the 3 focus group sessions to discuss their changes in attitude toward ADAS based on their driving experiences. We applied structural topic modeling (STM) on the focus group transcripts to reveal key topics deemed important to seniors. Results STM revealed 5 topics of importance for seniors. In order of prevalence, these were (i) safety, (ii) confidence concerning ADAS, (iii) ADAS functionality, (iv) user interface/usability, and (v) non-ADAS–related features. Based on topics and associated keywords, seniors perceived safety improvement with ADAS but expressed concerns about its limitations in coping with adverse driving conditions. Experience and training were suggested for improving seniors’ confidence in ADAS. Blind spot alert and adaptive cruise control received the most discussion regarding perceived safety and comfort. Discussion and Implications This study indicated that promoting road safety for senior drivers through ADAS is feasible. Acceptance and appropriate use of ADAS may be supported through intuitive and senior-friendly user interfaces, in-depth training programs, and owner’s manuals specifically designed and tested for senior drivers.


Author(s):  
O. J. Gietelink ◽  
B. De Schutter ◽  
M. Verhaegen

This paper presents a methodological approach for validation of advanced driver assistance systems. The methodology relies on the use of randomized algorithms that are more efficient than conventional validation that uses simulations and field tests, especially with increasing complexity of the system. The methodology first specifies the perturbation space and performance criteria. Then, a minimum number of samples and a relevant sampling space are selected. Next, an iterative randomized simulation is executed; then the simulation model is validated with the use of hardware tests to increase the reliability of the estimated performance. The proof of concept is illustrated with some examples of a case study involving an adaptive cruise control system. The case study points out some characteristic properties of randomized algorithms with respect to the necessary sample complexity and sensitivity to model uncertainty. Solutions for these issues are proposed as are corresponding recommendations for research.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 33
Author(s):  
Arie P. van den Beukel ◽  
Cornelie J. G. van Driel ◽  
Anika Boelhouwer ◽  
Nina Veders ◽  
Tobias Heffelaar

Driver assistance systems (ADAS), and especially those containing driving automation, change the role of drivers to supervisors who need to safeguard the system’s operation. Despite the aim to increase safety, the new tasks (supervision and intervention) may jeopardize safety. Consequently, safety officers address the need for specific training on ADAS. However, these tasks are not assessed in driver licensing today. Therefore, we developed a framework to assess in-practice driving proficiency when drivers utilize ADAS. This study evaluated whether the proposed framework is able to identify meaningful differences in driving proficiency between driving with and without assistance. We applied the framework to perform a qualitative assessment of driving proficiency with 12 novice drivers in a field experiment, comparable to a license test. The assistance system concerned Adaptive Cruise Control (ACC). The test showed that driving with ACC has a negative influence on self-initiated manoeuvres (especially lane changes) and sometimes led to improved adaptations to manoeuvres initiated by other road users (like merging in traffic). These results are in line with previous research and demonstrate the framework’s successfulness to assess novice drivers’ proficiency to utilize ADAS in road-traffic. Therewith, the proposed framework provides important means for driving instructors and examiners to address the safe operation of ADAS.


Author(s):  
Cătălin Meiroşu

AbstractDuring the previous years, the vehicle manufacturers have tried to equip their vehicles with as much technology as possible, making the driving experience for people easier than ever. Most of the modern vehicles come today with ADAS (Advanced Driver Assistance Systems) either for driving (E.g. Cruise Control, Blind Spot Warning) or Parking (E.g. Rear Ultrasonic Sensors, Rear View Camera). Since the vehicle come equipped with more technology, a major task in developing vehicle remains the integration of these ADAS system in the vehicle context with the other components. Since most of the components cope with each other on the vehicle level, some technologies are more affected by other components – such as the case of an ultrasound vehicle scanning system (Blind Spot Warning) and the Exhaust line that emits ultrasounds from the exhaust muffler. The aim of this paper is to study the influence of the exhaust line ultrasounds (ultrasounds that are emitted by the engine cycle and filtered in the exhaust line of the vehicle) over the detection performance of the Blind Spot Warning Ultrasound system. Since vehicles are sold with a wide variety of powertrains, the solution presented took into account also these differences between powertrains equipped. In order to test the solution, mock-ups of the vehicle were made in order to proof the robustness of the method.


Sign in / Sign up

Export Citation Format

Share Document