Controlling Mixed Connected and Non-Connected Vehicle Traffic Through a Diamond Interchange

Author(s):  
Viswanath Potluri ◽  
Pitu Mirchandani

Diamond interchanges (DIs) allow movement of vehicles between surface streets and freeways for all types of vehicles, including normal non-connected human-driven vehicle (NHDV) traffic and the connected vehicles (CVs). Unlike simple intersections, DIs consist of a pair of closely spaced intersections that are controlled together with complicated traffic movements and heavy demand fluctuations. This paper reviews the movements being controlled at DIs and presents a dynamic programming (DP)-based real-time proactive traffic control algorithm called MIDAS, to control both NHDVs and CVs. Like seminal cycle-free adaptive control methods such as OPAC and RHODES, MIDAS uses a forward recursion DP approach with efficient data structures for any large set of phase movements being controlled at DIs, over a finite-time horizon that rolls forward, and then uses a backward recursion to retrieve the optimal phase sequence and duration of phases. MIDAS captures Eulerian measurements from fixed loop detectors for all vehicles, and also captures Lagrangian measurements like in-vehicle GPS from CVs to estimate link travel times, arrival times, turning movements, etc. For every time horizon MIDAS predicts future arrivals, estimates queues at the interchange, and then minimizes a user-defined metric like delays, stops, or queues at an interchange. The paper compares performances of MIDAS with those of an optimal fixed cycle time signal control (OFTC) scheme and RHODES control on a simulated DI. The simulation is of Phoenix, AZ, DI (on I-17/19th Ave.) that uses the VISSIM micro-simulation platform. Performance is evaluated for various traffic loads and various CV market penetrations. Results show that MIDAS control outperforms RHODES and OFTC.

Author(s):  
Yiheng Feng ◽  
Jianfeng Zheng ◽  
Henry X. Liu

Most of the existing connected vehicle (CV)-based traffic control models require a critical penetration rate. If the critical penetration rate cannot be reached, then data from traditional sources (e.g., loop detectors) need to be added to improve the performance. However, it can be expected that over the next 10 years or longer, the CV penetration will remain at a low level. This paper presents a real-time detector-free adaptive signal control with low penetration of CVs ([Formula: see text]10%). A probabilistic delay estimation model is proposed, which only requires a few critical CV trajectories. An adaptive signal control algorithm based on dynamic programming is implemented utilizing estimated delay to calculate the performance function. If no CV is observed during one signal cycle, historical traffic volume is used to generate signal timing plans. The proposed model is evaluated at a real-world intersection in VISSIM with different demand levels and CV penetration rates. Results show that the new model outperforms well-tuned actuated control regarding delay reduction, in all scenarios under only 10% penetrate rate. The results also suggest that the accuracy of historical traffic volume plays an important role in the performance of the algorithm.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1466
Author(s):  
Beatris Adriana Escobedo-Trujillo ◽  
José Daniel López-Barrientos ◽  
Javier Garrido-Meléndez

This work presents a study of a finite-time horizon stochastic control problem with restrictions on both the reward and the cost functions. To this end, it uses standard dynamic programming techniques, and an extension of the classic Lagrange multipliers approach. The coefficients considered here are supposed to be unbounded, and the obtained strategies are of non-stationary closed-loop type. The driving thread of the paper is a sequence of examples on a pollution accumulation model, which is used for the purpose of showing three algorithms for the purpose of replicating the results. There, the reader can find a result on the interchangeability of limits in a Dirichlet problem.


Author(s):  
Darren J. Torbic ◽  
Daniel Cook ◽  
Joseph Grotheer ◽  
Richard Porter ◽  
Jeffrey Gooch ◽  
...  

The objective of this research was to develop new intersection crash prediction models for consideration in the second edition of the Highway Safety Manual (HSM), consistent with existing methods in HSM Part C and comprehensive in their ability to address a wide range of intersection configurations and traffic control types in rural and urban areas. The focus of the research was on developing safety performance functions (SPFs) for intersection configurations and traffic control types not currently addressed in HSM Part C. SPFs were developed for the following general intersection configurations and traffic control types: rural and urban all-way stop-controlled intersections; rural three-leg intersections with signal control; intersections on high-speed urban and suburban arterials (i.e., arterials with speed limits greater than or equal to 50 mph); urban five-leg intersections with signal control; three-leg intersections where the through movements make turning maneuvers at the intersections; crossroad ramp terminals at single-point diamond interchanges; and crossroad ramp terminals at tight diamond interchanges. Development of severity distribution functions (SDFs) for use in combination with SPFs to estimate crash severity as a function of geometric design elements and traffic control features was explored; but owing to challenges and inconsistencies in developing and interpreting the SDFs, it was recommended for the second edition of the HSM that crash severity for the new intersection configurations and traffic control types be addressed in a manner consistent with existing methods in Chapters 10, 11, and 12 of the first edition, without use of SDFs.


2015 ◽  
Vol 15 (5) ◽  
pp. 5-16
Author(s):  
H. Abouaïssa ◽  
H. Majid

Abstract The studies presented in this paper deal with traffic control in case of missing data and/or when the loop detectors are faulty. We show that the traffic state estimation plays an important role in traffic prediction and control. Two approaches are presented for the estimation of the main traffic variables (traffic density and mean speed). The state constructors obtained are then used for traffic flow control. Several numerical simulations show very promising results for both traffic state estimation and control.


Top ◽  
2021 ◽  
Author(s):  
Luis A. Guardiola ◽  
Ana Meca ◽  
Justo Puerto

AbstractWe consider a cooperative game defined by an economic lot-sizing problem with heterogeneous costs over a finite time horizon, in which each firm faces demand for a single product in each period and coalitions can pool orders. The model of cooperation works as follows: ordering channels and holding and backlogging technologies are shared among the members of the coalitions. This implies that each firm uses the best ordering channel and holding technology provided by the participants in the consortium. That is, they produce, hold inventory, pay backlogged demand and make orders at the minimum cost of the coalition members. Thus, firms aim at satisfying their demand over the planing horizon with minimal operation cost. Our contribution is to show that there exist fair allocations of the overall operation cost among the firms so that no group of agents profit from leaving the consortium. Then we propose a parametric family of cost allocations and provide sufficient conditions for this to be a stable family against coalitional defections of firms. Finally, we focus on those periods of the time horizon that are consolidated and we analyze their effect on the stability of cost allocations.


Sign in / Sign up

Export Citation Format

Share Document