Indiana Subdrainage Experience and Application

Author(s):  
Hossam F. Hassan ◽  
Thomas D. White ◽  
Rebecca McDaniel ◽  
David Andrewski

The applications of pavement subdrainage in the state of Indiana are presented. A recent study evaluated pavement subdrainage systems and measured and predicted moisture conditions underneath various types of pavements. Camera systems were used for internal inspection of the edge and geocomposite drains. Pavement instrumentation included moisture blocks, pressure transducers, temperature probes, rain and outflow tipping buckets, and a data acquisition system. Ongoing research using a test site on I-469 at Fort Wayne, Indiana, is aimed at finding the optimum location and layer configuration in flexible pavement; it uses those instruments as well as a TDR system, neutron probes, resistivity probe trees, and an enhanced data acquisition process. The research is a long-term project that will build on the data base of material hydraulic characteristics and performance. Indiana Department of Transportation has formed a committee to address issues related to use of subdrainage. Some of the recommendations from the committee were to abandon geocomposite drains, use bigger concrete protector walls at outlet pipes, and implement a routine inspection and maintenance program for drainage systems.

Author(s):  
Chaochao Lin ◽  
Matteo Pozzi

Optimal exploration of engineering systems can be guided by the principle of Value of Information (VoI), which accounts for the topological important of components, their reliability and the management costs. For series systems, in most cases higher inspection priority should be given to unreliable components. For redundant systems such as parallel systems, analysis of one-shot decision problems shows that higher inspection priority should be given to more reliable components. This paper investigates the optimal exploration of redundant systems in long-term decision making with sequential inspection and repairing. When the expected, cumulated, discounted cost is considered, it may become more efficient to give higher inspection priority to less reliable components, in order to preserve system redundancy. To investigate this problem, we develop a Partially Observable Markov Decision Process (POMDP) framework for sequential inspection and maintenance of redundant systems, where the VoI analysis is embedded in the optimal selection of exploratory actions. We investigate the use of alternative approximate POMDP solvers for parallel and more general systems, compare their computation complexities and performance, and show how the inspection priorities depend on the economic discount factor, the degradation rate, the inspection precision, and the repair cost.


Author(s):  
Mukarrum Raheel ◽  
Abraham Engeda

Regenerative flow compressors and pumps, hereafter called RFC/RFP have found many applications in industry; still they are the most neglected turbomachines in the family of dynamic compressors. The number of publications existing in literature is very small compared to the large number of papers about the centrifugal and axial turbocompressors. This paper gives a detail discussion of fundamentals and working principle of regenerative turbomachines. Regenerative compressors are compared with centrifugal compressors and the importance of regenerative turbomachines in low specific speed range is emphasized. The major findings of available literature on regenerative turbomachine are summarized. The current status, limitations and some of the challenges faced by RFC/RFP are assessed in context of performance improvement. The paper concludes with an overview of ongoing research and future directions to be followed for performance improvement of this neglected class of turbomachines.


Author(s):  
C. M. Refaul Ferdous ◽  
Amanda Kulhawy ◽  
Jessica Farrell ◽  
Chris Beaudin ◽  
Anthony Payoe ◽  
...  

The Enbridge Liquids Pipeline system is comprised of a large number of facilities including storage terminals, pump stations, injection sites, and delivery sites. Given the vast amount of small diameter piping (SDP) within company Pipeline facilities, SDP represents a significant portion of total facility integrity risk. An event such as equipment failure or product release can cause significant business impacts, and adverse consequences to the environment and/or safety of operations personnel. A quantitative risk based approach is required in order to establish robust, risk-based plans and programs to maintain the integrity of these SDP sections. Small diameter piping lengths are relatively short. Consequently, it is impractical to use SDP length as a unit of likelihood and risk measure. Instead, the preferred methodology is to determine the total number of assemblies for each type of SDP. In support of this approach, an inventory of SDP sections throughout the system has been gathered. For illustrative purposes, an example of a small diameter section would be a pressure transmitter branch connection. The isolatable section that would be risk assessed would start from the surface of the main station piping connection and continue up to the transmitter. This paper presents the framework for likelihood and consequence assessment of SDP based on the system description above. This framework quantitatively estimates the risk of SDP failure and risk-ranks SDP sections in support of implementing and establishing a system wide Risk Based Inspection and Maintenance program for SDP.


Author(s):  
Abdallah Chehade ◽  
Farid Breidi ◽  
Keith Scott Pate ◽  
John Lumkes

Valve characteristics are an essential part of digital hydraulics. The on/off solenoid valves utilized on many of these systems can significantly affect the performance. Various factors can affect the speed of the valves causing them to experience various delays, which impact the overall performance of hydraulic systems. This work presents the development of an adaptive statistical based thresholding real-time valve delay model for digital Pump/Motors. The proposed method actively measures the valve delays in real-time and adapts the threshold of the system with the goal of improving the overall efficiency and performance of the system. This work builds on previous work by evaluating an alternative method used to detect valve delays in real-time. The method used here is a shift detection method for the pressure signals that utilizes domain knowledge and the system’s historical statistical behavior. This allows the model to be used over a large range of operating conditions, since the model can learn patterns and adapt to various operating conditions using domain knowledge and statistical behavior. A hydraulic circuit was built to measure the delay time experienced from the time the signal is sent to the valve to the time that the valve opens. Experiments were conducted on a three piston in-line digital pump/motor with 2 valves per cylinder, at low and high pressure ports, for a total of six valves. Two high frequency pressure transducers were used in this circuit to measure and analyze the differential pressure on the low and high pressure side of the on/off valves, as well as three in-cylinder pressure transducers. Data over 60 cycles was acquired to analyze the model against real time valve delays. The results show that the algorithm was successful in adapting the threshold for real time valve delays and accurately measuring the valve delays. 


Author(s):  
S. Blaser ◽  
S. Nebiker ◽  
S. Cavegn

Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.


2021 ◽  
Vol 251 ◽  
pp. 04011
Author(s):  
Fabrizio Ameli ◽  
Marco Battaglieri ◽  
Mariangela Bondí ◽  
Andrea Celentano ◽  
Sergey Boyarinov ◽  
...  

An effort is underway to develop streaming readout data acquisition system for the CLAS12 detector in Jefferson Lab’s experimental Hall-B. Successful beam tests were performed in the spring and summer of 2020 using a 10GeV electron beam from Jefferson Lab’s CEBAF accelerator. The prototype system combined elements of the TriDAS and CODA data acquisition systems with the JANA2 analysis/reconstruction framework. This successfully merged components that included an FPGA stream source, a distributed hit processing system, and software plugins that allowed offline analysis written in C++ to be used for online event filtering. Details of the system design and performance are presented.


1994 ◽  
Vol 4 (3-4) ◽  
pp. 279-296 ◽  
Author(s):  
M. Arnaud ◽  
E. Aubourg ◽  
P. Bareyre ◽  
S. Br';ehin ◽  
R. Caridroit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document