Design of Gate Delay and Gate Interval Time for Four-Quadrant Gate System at Railroad-Highway Grade Crossings

Author(s):  
Fred Coleman ◽  
oung J. Moon

A design methodology for gate delay and gate interval time for at-grade crossings using four-quadrant gates is developed. The design approach is based on the concept of dilemma zones related to signal change intervals at signalized intersections. The design approach is validated based on data from six sites in Illinois on a proposed high-speed rail corridor. Gate delay and gate interval times are determined that provide an optimal safe decision point to allow a driver to stop before the crossing or to proceed through the crossing without becoming trapped by the exit gates.

Author(s):  
Adrian Hellman ◽  
Tashi Ngamdung

The United States Department of Transportation’s (USDOT) Research and Innovative Technology Administration’s John A. Volpe National Transportation Systems Center (Volpe Center), under the direction of the USDOT Federal Railroad Administration (FRA) Office of Research and Development (ORD), conducted a reliability analysis of the four-quadrant gate/vehicle detection equipment installed on the potential high-speed rail (HSR) corridor between Chicago and St Louis. A total of 69 highway-rail grade crossings on a 121-mile (195 km) segment of the 280-mile corridor were equipped with four-quadrant gates and inductive loop vehicle detection technology. This segment, between Mazonia and Springfield Illinois, may eventually carry passenger trains at speeds up to 110 mph (177 km/h), including at many of the highway-rail grade crossings. The analysis was based on maintenance records obtained from the Union Pacific Railroad (UPRR), the owner and operator of the rail line. The results were used to assess the impact of the equipment reliability on the proposed HSR timetable. The Volpe Center study showed that the total average delay to the five scheduled daily high-speed passenger roundtrips was an estimated 10.5 minutes, or approximately one minute per train. Overall, extensive analysis of the trouble ticket data showed that the four-quadrant gate and vehicle detection equipment had a minimal direct impact on the frequency and duration of grade crossing malfunctions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng Dong ◽  
Jibiao Zhou

The stop/go decisions at signalized intersections are closely related to driving speed during signal change intervals. The speed during stop/go decision-making has a significant influence on the dilemma area, resulting in changes of stop/go decisions and high complexity of the decision-making process. Considering that traffic delays and vehicle exhaust pollution are mainly caused by queuing at intersections, the stop-line passing speed during the signal change interval will affect both vehicle operation safety and the atmospheric environment. This paper presents a comparative study on drivers’ stop/go behaviors when facing a transition signal period consisting of 3 s green flashing light (FG) and 3 s yellow light (Y) at rural high-speed intersections and urban intersections. For this study, 1,459 high-quality vehicle trajectories of five intersections in Shanghai during the transition signal period were collected. Of these five intersections, three are high-speed intersections with a speed limit of 80 km/h, and the other two are urban intersections with a speed limit of 50 km/h. Trajectory data of these vehicle samples were statistically analyzed to investigate the general characteristics of potential influencing factors, including the instantaneous speed and the distance to the intersection at the start of FG, the vehicle type, and so on. Decision Tree Classification (DTC) models are developed to reveal the relationship between the drivers’ stop/go decisions and these possible influencing factors. The results indicate that the instantaneous speed of FG onset, the distance to the intersection at the start of FG, and the vehicle type are the most important predictors for both types of intersections. Besides, a DTC model can offer a simple way of modeling drivers’ stopping decision behavior and produce good results for urban intersections.


Author(s):  
Fred Coleman ◽  
Young J. Moon

The objective of this paper is to determine the location of sensors in the track system functioning as checkpoints to provide information to a train on the status of the crossing and provide evasive maneuver time for the train and trapped vehicle. Two train-operating scenarios are evaluated: the first provides no deceleration when a trapped vehicle is detected; the second scenario has the train decelerate at a tolerable deceleration rate to passengers when a trapped vehicle is detected. The findings indicate that there is a trade-off between minimizing the distances to locate the trapped vehicle detection sensors in the track system and potential issues of reliability of vehicle detection and maximization of safety. Recommendations include provision of on-board real-time status information on the crossing(s) in the train with automatic train location and control to continuously provide safe stopping distances in event of a trapped vehicle.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jing Shi ◽  
Qiyuan Peng ◽  
Ling Liu

2018 ◽  
Vol 8 (3) ◽  
pp. 515-530
Author(s):  
Massimo Zucchetti1,2 ◽  
◽  
Keyword(s):  

2019 ◽  
Author(s):  
Valentina Bracaglia ◽  
Tiziana D'Alfonso ◽  
Alberto Nastasi ◽  
Dian Sheng ◽  
Yulai Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document