Influence of Transmyocardial Laser Revascularization (TMLR) on Regional Cardiac Function and Metabolism in an Isolated Hemoperfused Working Pig Heart

2002 ◽  
Vol 25 (11) ◽  
pp. 1074-1081 ◽  
Author(s):  
D. Modersohn ◽  
S. Eddicks ◽  
I. Ast ◽  
S. Holinski ◽  
W. Konertz

The mechanism of an indirect revascularization in ischemic myocardium by transmyocardial laser revascularization (TMLR) is not yet fully understood. An improvement of clinical symptoms caused by TMLR is reported in many clinical trials with patients in which a direct revascularization is not possible. An increase of myocardial perfusion through laser channels is doubtful, because the myocardial pressure in the wall is higher than in the cavum. Therefore we measured the local cardiac function (intramyocardial pressure, wall thickness, pressure-length curves) and acute metabolic changes (tissue lactate content, tissue pO2) in ischemic and non-ischemic regions before and after TMLR in isolated hemoperfused pig hearts. An isolated heart was chosen because it enabled us to separate coronary flow from flow through ventricular channels. The ischemia was induced by coronary occlusion or microembolization (eight hearts each). It should be noted that microembolization leads to conditions which are more comparable with those found in patients selected for TMLR. In the isolated working heart, the coronary perfusion can be controlled independently from perfusion through the ventricular cavum. Under the ischemic conditions mentioned above, we observed that the intramyocardial pressure in the ischemic region decreased below the left ventricular pressure, so one premise for indirect perfusion was met. TMLR after microembolization led to a significant improvement of regional cardiac work and the tissue oxygen pressure. These acute effects demonstrate the possibility of functional and metabolic amelioration by TMLR after ischemia induced by microembolization in an isolated hemoperfused pig heart.

1994 ◽  
Vol 266 (3) ◽  
pp. H1233-H1241 ◽  
Author(s):  
L. S. Mihailescu ◽  
F. L. Abel

This study presents an improved method for the measurement of intramyocardial pressure (IMP) using the servo-nulling mechanism. Glass micropipettes (20-24 microns OD) were used as transducers, coated to increase their mechanical resistance to breakage, and placed inside the left ventricular wall with a micropipette holder and manipulator. IMP was measured at the base of the left ventricle in working and nonworking isolated cat hearts that were perfused with Krebs-Henseleit buffer. In working hearts a transmural gradient of systolic IMP oriented from endocardium toward the epicardium was found; the endocardial values for systolic IMP were slightly higher than systolic left ventricular pressure (LVP), by 11-18%. Increases in afterload induced increases in IMP, without changing the systolic IMP-to-LVP ratio. In nonworking hearts with drained left ventricles, the systolic transmural gradient for IMP described for working hearts persisted, but at lower values, and was directly dependent on coronary perfusion pressure. Systolic IMP-to-LVP ratios were always > 1. The diastolic IMP of both working and nonworking hearts exhibited irregular transmural gradients. Our results support the view that generated systolic IMP is largely independent of LVP development.


2012 ◽  
Vol 90 (7) ◽  
pp. 851-862 ◽  
Author(s):  
Ting-Ting Li ◽  
Yi-Shuai Zhang ◽  
Lan He ◽  
Bin Liu ◽  
Rui-Zheng Shi ◽  
...  

Myeloperoxidase (MPO) is involved in myocardial ischemia–reperfusion (IR) injury and vascular peroxidase (VPO) is a newly identified isoform of MPO. This study was conducted to explore whether VPO is involved in IR-induced cardiac dysfunction and apoptosis. In a rat Langendorff model of myocardial IR, the cardiac function parameters (left ventricular pressure and the maximum derivatives of left ventricular pressure and coronary flow), creatine kinase (CK) activity, apoptosis, VPO1 activity were measured. In a cell (rat-heart-derived H9c2 cells) model of hypoxia–reoxygenation (HR), apoptosis, VPO activity, and VPO1 mRNA expression were examined. In isolated heart, IR caused a marked decrease in cardiac function and a significant increase in apoptosis, CK, and VPO activity. These effects were attenuated by pharmacologic inhibition of VPO. In vitro, pharmacologic inhibition of VPO activity or silencing of VPO1 expression significantly suppressed HR-induced cellular apoptosis. Our results suggest that increased VPO activity contributes to IR-induced cardiac dysfunction and inhibition of VPO activity may have the potential clinical value in protecting the myocardium against IR injury.


2014 ◽  
Vol 92 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Antonella Ferrara ◽  
Fabio Fusi ◽  
Beatrice Gorelli ◽  
Giampietro Sgaragli ◽  
Simona Saponara

The effect of freeze-dried red wine (FDRW) on cardiac function and electrocardiogram (ECG) in Langendorff-isolated rat hearts was investigated. FDRW significantly decreased left ventricular pressure and coronary perfusion pressure, the latter being dependent on the activation of both phosphatidylinositol 3-kinase and eNOS. FDRW did not affect the QRS and QT interval in the ECG, although at 56 μg of gallic acid equivalents/mL, it prolonged PQ interval and induced a second-degree atrioventricular block in 3 out of 6 hearts. This is the first study demonstrating that at concentrations resembling a moderate consumption of red wine, FDRW exhibited negative inotropic and coronary vasodilating activity leaving unaltered ECG, whereas at very high concentrations, it induced arrhythmogenic effects.


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


1977 ◽  
Vol 43 (6) ◽  
pp. 936-941 ◽  
Author(s):  
W. L. Sembrowich ◽  
M. B. Knudson ◽  
P. D. Gollnick

The effect of 18 wk of treadmill running on skeletal muscle metabolism and myocardial function of normal and myopathic hamsters was examined. BIO 14.6 hamsters could tolerate an exercise intensity of about 18 m/min for 40 min, 5 days/wk. Further increases in speed or number of bouts per day resulted in a falloff in performance. Normal hamsters could tolerate higher speeds and longer exercise bouts. Exercise did not change the severity of lesions of either the heart or skeletal muscle of the myopathic hamsters. A training effect was evidenced by increased succinate dehydrogenase activity in the soleus muscle. Cardiac function was evaluated as contractility measured from left ventricular pressure curves and expressed as (dP/dt)/kP. The results suggested that cardiac contractility was not as severely depressed in the trained BIO 14.6 strain of hamsters as in nontrained controls. However, (dP/dt)/kP was lower in the trained myopathic animals than in normal hamsters. ATP, CP, and glycogen levels were lower in myopathic hamsters with the lowest values occurring in the trained group. These data demonstrate that the BIO 14.6 strain of hamster can tolerate exercise training and that such training may have a positive effect on cardiac function.


1984 ◽  
Vol 247 (1) ◽  
pp. H52-H60 ◽  
Author(s):  
M. Matsuzaki ◽  
J. Patritti ◽  
T. Tajimi ◽  
M. Miller ◽  
W. S. Kemper ◽  
...  

We examined the effects of a cardioselective beta-blocking drug on exercise-induced regional myocardial ischemia in 10 conscious dogs with chronic coronary artery stenosis. An ameroid constrictor, Doppler flowprobe, and hydraulic cuff were placed around the left circumflex coronary artery, and left ventricular pressure (LVP), systolic wall thickening (% delta WT; by sonomicrometry), and myocardial blood flow (MBF; microspheres) were measured during control standing, control treadmill exercise, and identical exercise after atenolol (1 mg/kg po). Prior to study, in every dog % delta WT and MBF in the ischemic area were normal at rest, indicating collateral development. During control exercise, % delta WT in the ischemic region markedly decreased from 27 to 4%, and transmural ischemia was evident in that region. Heart rate, systolic LVP, and LV (+)dP/dt were significantly lower during exercise after atenolol than during control exercise. % delta WT in the normal area was only 81% of that during control exercise, but dysfunction in the ischemic area was improved (77% increase compared with control exercise). Accompanying the improved function was a significant increase of MBF/beat and relative MBF in the ischemic zone; the endocardial-to-epicardial ratio increased from 0.27 to 0.47. Thus atenolol improved regional MBF distribution, thereby diminishing exercise-induced regional myocardial dysfunction and accelerating its recovery.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mokhtar RH ◽  
Abdullah N ◽  
Ayob A

Introduction: Eurycoma longifolia (E. longifolia) which is better known locally as Tongkat Ali is an indigenous plant in Malaysia. It belongs to the family of Simaroubaceae and is popular as a traditional medicine for its aphrodisiac properties. Throughout the years, several studies have been conducted to prove its effect on aphrodisiac action, antimalarial, antibacterial and anxiolytic properties but its effect to the cardiovascular system had not been fully explored. This study was aimed to demonstrate the changes that take place in the isolated heart following the injection of the extract. Methods: Three parameters that were measured included the coronary perfusion pressure (CPP), the left ventricular developed pressure (LVDP) and the heart rate (HR). Eighteen isolated rat hearts were used and were divided equally into three groups. The first group was to observe the effect of Isoprenaline, a β agonist while the second group was to see the effect of sodium nitroprusside (SNP), a nitric oxide (NO) donor. The dose which gave the maximum effect for these two positive controls was used to compare with the effect of E. longifolia water extract in the third group of rats. Isolated heart was mounted using the Langendorff apparatus and perfused with modified Krebs-Henseleit buffer. Doses of controls and the extract were instilled through an injection port, and the effect of each dose was monitored. Results: E. longifolia extract was found to reduce the CPP in normotensive rat at two of the highest doses. A dose of 1.0 mg of the extract reduced the CPP significantly from 34.52 ± 4.99 mmHg of the baseline value to 31.99 ± 4.93 mmHg while the dose of 10.0 mg of the extract reduced the CPP significantly to 32.67 ± 3.89 mmHg. However, there were no significant changes of effect of the extract on the LVDP and HR as compared to control. Conclusion: These early findings suggest that E. longifolia extract may have vasodilatory property, which supports its traditional usage with minimum cardiovascular side effects.


2007 ◽  
pp. 605-616
Author(s):  
Tatsushi Tokuyasu ◽  
Akito Ichiya ◽  
Tadashi Kitamura ◽  
Genichi Sakaguchi ◽  
Masashi Komeda

1996 ◽  
Vol 271 (5) ◽  
pp. H1884-H1892 ◽  
Author(s):  
D. F. Stowe ◽  
B. M. Graf ◽  
S. Fujita ◽  
G. J. Gross

Bimakalim (Bim), an opener of ATP-sensitive K+ (KATP) channels, was given alone or with 2,3-butanedione monoxime (BDM), a reversible uncoupler of contractility, to protect myocardial function during 1 day of hypothermia. Left ventricular pressure (LVP), coronary flow (CF), percent O2 extraction (%O2E), and cardiac efficiency were measured in 96 isolated, perfused guinea pig hearts divided into seven groups: 1) cold control (no drugs); 2) BDM; 3) Bim; 4) BDM + Bim; 5) BDM + glibenclamide (Glib, a blocker of KATP channels); 6) BDM + Bim + Glib; and 7) time control (6 h warm perfusion only). Drugs were given before, during, and initially after 22 h of low CF at 3.8 degrees C. At 26 h (cold groups) or 4 h (warm group) LVP (mmHg; means +/- SE) was similar for time control (94 +/- 4) and BDM + Bim (92 +/- 4) groups, lower and equivalent in the BDM (65 +/- 7) and BDM + Bim + Glib (64 +/- 7) groups, but LVP was higher than in the Bim group (46 +/- 3), and lowest in the cold control (30 +/- 8) group. In addition, only in the BDM + Bim group were basal CF, %O2E, and cardiac efficiency returned to values obtained in the time control group. Epinephrine increased LVP to that of the time control (106 +/- 3) group only in the BDM + Bim group (106 +/- 3) after hypothermia, and CF increases with adenosine, 5-hydroxytryptamine, and nitroprusside were similar to that of the time control group only in the BDM + Bim group after hypothermia. All of the effects of Bim were reversed by Glib. These results indicate that Bim, given with BDM, effectively preserves myocardial function and metabolism as well as inotropic and vasodilatory reserve during long-term hypothermic preservation as if the 1-day hypothermic state had not been instituted. Because the beneficial effects of Bim are blocked by Glib, the protective effect of Bim likely results from maintained KATP channel opening. Treatment with exogenous KATP openers may prove useful in preserving cardiac function in the transplanted heart.


Sign in / Sign up

Export Citation Format

Share Document